MySQL Partitioning

MySQL Partitioning

Abstract

Thisisthe MySQL Partitioning extract from the MySQL 6.0 Reference Manual.

Document generated on; 2009-06-02 (revision: 15165)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercia software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Useis
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo™ and
MySQL ™ are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is aregistered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo™ et MySQL ™ sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée auix
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: Y ou may create a printed
copy of this documentation solely for your own personal use. Conversion to other formatsis alowed as long as the actua content is not altered or
edited in any way. Y ou shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
amanner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing atranglation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versionsin
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/6.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Partitioning

This chapter discusses MySQL'simplementation of user-defined partitioning. Y ou can determine whether your MySQL Server
supports partitioning by means of a SHOW VARI ABLES command such as this one:

nysql > SHOW VARI ABLES LI KE ' %partition% ;
+

B E e
| Variabl e_nane | Val ue |
R Fomm - - +
| have_partitioning | YES |
Fom e e Ho-m- - +

1 rowin set (0.00 sec)

Y ou can also check the output of the SHOW PLUGH NS statement, as shown here:

nysql > SHOW PLUG NS;

Fomm - oo R R Fomm - B +
| Nane | Status | Type | Library | License |
Fom e a Fommmmea - oo o a Fommme - - Fommme oo +
bi nl og ACTI VE STORAGE ENG NE | NULL GPL
partition ACTI VE STORAGE ENG NE | NULL GPL
ARCHI VE ACTI VE STORAGE ENG NE | NULL GPL
BLACKHOLE ACTI VE STORAGE ENG NE | NULL GPL
Csv ACTI VE STORAGE ENG NE | NULL GPL
FEDERATED DI SABLED | STORAGE ENG NE | NULL GPL
MEMORY ACTI VE STORAGE ENG NE | NULL GPL
| nnoDB ACTI VE STORAGE ENG NE | NULL GPL
MRG_MYI SAM | ACTI VE STORAGE ENG NE | NULL GPL
M| SAM ACTI VE STORAGE ENG NE | NULL GPL
ndbcl ust er DI SABLED | STORAGE ENGI NE | NULL GPL
Fom oo - R R L L +

11 rows in set (0.00 sec)

If you do not seethe have_partiti oni ng variable with the value YES listed in the output of an appropriate SHOWN VARI -
ABLES statement, or if you do not seetheparti ti on plugin listed with the value ACTI VE for the St at us column in the output
of SHOW PLUG NS (show in bold text in the example just given), then your version of MySQL does not support partitioning.

Community binaries provided by Sun Microsystems include partitioning support. For information about partitioning support
offered in commercial MySQL Server binaries, see MySQL Enterprise Server 5.1, on the MySQL website.

If you are compiling MySQL 6.0 from source, the build must be configured using - - wi t h- parti ti on to enable partitioning.

If your MySQL binary is built with partitioning support, nothing further needs to be done in order to enableit (for example, no spe-
cia entriesarerequired inyour ny. cnf file).

An introduction to partitioning and partitioning concepts may be found in Chapter 1, Overview of Partitioning in MySQL.

MySQL supports several types of partitioning, which are discussed in Chapter 2, Partition Types, as well as subpartitioning, which
is described in Section 2.5, “ Subpartitioning”.

Methods of adding, removing, and altering partitions in existing partitioned tables are covered in Chapter 3, Partition Management.
Table maintenance commands for use with partitioned tables are discussed in Section 3.3, “Maintenance of Partitions’.

The PARTI TI ONS tablein the | NFORVATI ON_SCHEMNA database provides information about partitions and partitioned tables.
See The| NFORVATI ON_SCHENMA PARTI TI ONS Table, for more information; for some examples of queries against this table,
see Section 2.6, “How MySQL Partitioning Handles NULL".

The partitioning implementation in MySQL 6.0 is still undergoing development. For known issues with MySQL partitioning, see
Chapter 5, Restrictions and Limitations on Partitioning, where we have noted these.

Y ou may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL include the following:

e MySQL Partitioning Forum
Thisisthe official discussion forum for those interested in or experimenting with MySQL Partitioning technology. It features
announcements and updates from MySQL developers and others. It is monitored by members of the Partitioning Devel opment
and Documentation Teams.

« Mikael RonstrAfm's Blog

MySQL Partitioning Architect and Lead Developer Mikael RonstrAfm frequently posts articles here concerning his work with

http://dev.mysql.com/doc/refman/6.0/en/show-variables.html
http://dev.mysql.com/doc/refman/6.0/en/show-plugins.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_have_partitioning
http://dev.mysql.com/doc/refman/6.0/en/show-variables.html
http://dev.mysql.com/doc/refman/6.0/en/show-variables.html
http://dev.mysql.com/doc/refman/6.0/en/show-plugins.html
http://www.mysql.com/products/enterprise/server.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/

Partitioning

MySQL Partitioning and MySQL Cluster.
¢ PlanetMySQL

A MySQL news site featuring MySQL -related blogs, which should be of interest to anyone using my MySQL. We encourage
you to check here for links to blogs kept by those working with MySQL Partitioning, or to have your own blog added to those
covered.

MySQL 6.0 binaries are available from http://dev.mysgl.com/downl oads/mysql/6.0.html. However, for the latest partitioning bug-
fixes and feature additions, you can obtain the source from our Bazaar repository. To enable partitioning, you need to compile the
server usingthe- - wi t h- parti ti on option. For moreinformation about building MySQL, see MySQL Installation Using a
Source Distribution. If you have problems compiling a partitioning-enabled MySQL 6.0 build, check the MySQL Partitioning For-
um and ask for assistance there if you do not find a solution to your problem already posted.

http://www.planetmysql.org/
http://dev.mysql.com/downloads/mysql/6.0.html
http://dev.mysql.com/doc/refman/6.0/en/installing-source.html
http://dev.mysql.com/doc/refman/6.0/en/installing-source.html
http://forums.mysql.com/list.php?106
http://forums.mysql.com/list.php?106

Chapter 1. Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 6.0.
For information on partitioning restrictions and feature limitations, see Chapter 5, Restrictions and Limitations on Partitioning.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data storage. The SQL language
itself isintended to work independently of any data structures or media underlying the schemas, tables, rows, or columns with
which it works. Nonethel ess, most advanced database management systems have evolved some means of determining the physical
location to be used for storing specific pieces of datain terms of the file system, hardware or even both. In MySQL, the | nnoDB
storage engine has long supported the notion of atablespace, and the MySQL Server, even prior to the introduction of partitioning,
could be configured to employ different physical directories for storing different databases (see Using Symbolic Links, for an ex-
planation of how thisis done).

Partitioning takes this notion a step further, by allowing you to distribute portions of individual tables across afile system accord-
ing to ruleswhich you can set largely as needed. In effect, different portions of atable are stored as separate tables in different loca-
tions. The user-selected rule by which the division of datais accomplished is known as a partitioning function, which in MySQL
can be the modulus, simple matching against a set of ranges or value lists, an internal hashing function, or alinear hashing function.
The function is selected according to the partitioning type specified by the user, and takes as its parameter the value of a user-
supplied expression. This expression can be either an integer column value, or afunction acting on one or more column values and
returning an integer. The value of this expression is passed to the partitioning function, which returns an integer value representing
the number of the partition in which that particular record should be stored. This function must be non-constant and non-random. It
may not contain any queries, but may use an SQL expression that isvalid in MySQL, aslong as that expression returns either
NULL or aninteger i nt val such that

- MAXVALUE <= intval <= MAXVALUE

(MAXVAL UE is used to represent the least upper bound for the type of integer in question. - MAXVAL UE represents the greatest
lower bound.) There are some additional restrictions on partitioning functions; see Chapter 5, Restrictions and Limitations on Parti-
tioning, for more information about these.

Examples of partitioning functions can be found in the discussions of partitioning types later in this chapter (see Chapter 2, Parti-
tion Types), aswell asin the partitioning syntax descriptions given in CREATE TABLE Syntax.

Thisis known as horizontal partitioning — that is, different rows of atable may be assigned to different physical partitions.
MySQL 6.0 does not support vertical partitioning, in which different columns of atable are assigned to different physical parti-
tions. There are not at this time any plans to introduce vertical partitioning into MySQL 6.0.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL server; the MySQL partition-
ing engine runs in a separate layer and can interact with any of these. In MySQL 6.0, al partitions of the same partitioned table
must use the same storage engine; for example,A you cannot use Myl SAMfor one partition and | nnoDB for another. However,
there is nothing preventing you from using different storage engines for different partitioned tables on the same MySQL server or
even in the same database.

Note
MySQL partitioning cannot be used with the VERGE or CSV storage engines.

To employ a particular storage engine for a partitioned table, it is necessary only to usethe [STORAGE] ENG NE option just as
you would for a non-partitioned table. However, you should keep in mind that [STORAGE] ENG NE (and other table options)
need to be listed before any partitioning options are used in a CREATE TABLE statement. This example shows how to create ata-
blethat is partitioned by hash into 6 partitions and which uses the | nnoDB storage engine:

CREATE TABLE ti (id INT, anpbunt DECI MAL(7,2), tr_date DATE)
ENG NE=I NNODB
PARTI TI ON BY HASH(MONTH(tr_date))
PARTI TI ONS 6;

Note
Each PARTI TI ONclause canincludea| STORAGE] ENG NE option, but in MySQL 6.0 this has no effect.
Important

Partitioning applies to all data and indexes of atable; you cannot partition only the data and not the indexes, or vice
versa, nor can you partition only a portion of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DI RECTORY and | NDEX DI RECT-
ORY options for the PARTI T ON clause of the CREATE TABLE statement used to create the partitioned table.

http://dev.mysql.com/doc/refman/6.0/en/symbolic-links.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Overview of Partitioning in MySQL

Note

The DATA DI RECTORY and | NDEX DI RECTORY options have no effect when defining partitions for tables using
the | nnoDB storage engine.

DATA DI RECTORY and | NDEX DI RECTORY are not supported for individual partitions or subpartitions on Win-
dows. Beginning with MySQL 6.0.5, these options are ignored on Windows, except that a warning is generated.
(Bug#30459)

In addition, MAX_ROWS and M N_ROWS can be used to determine the maximum and minimum numbers of rows, respectively, that
can be stored in each partition. See Chapter 3, Partition Management, for more information on these options.

Some of the advantages of partitioning include:

e Being able to store more data in one table than can be held on asingle disk or file system partition.

« Datathat loses its usefulness can often be easily be removed from the table by dropping the partition containing only that data.
Conversely, the process of adding new data can in some cases be greatly facilitated by adding a new partition specifically for
that data.

« Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause can be stored only on one
or more partitions, thereby excluding any remaining partitions from the search. Because partitions can be altered after a parti-
tioned table has been created, you can reorganize your data to enhance frequent queries that may not have been so when the
partitioning scheme was first set up. This capability is sometimes referred to as partition pruning. For more information, see
Chapter 4, Partition Pruning.

Other benefits usually associated with partitioning include those in the following list. These features are not currently implemented
in MySQL Partitioning, but are high on our list of priorities.

¢ Queriesinvolving aggregate functions such as SUM) and COUNT() can easily be parallelized. A simple example of such a
query might be SELECT sal esperson_id, COUNT(orders) as order_total FROM sal es GROUP BY
sal esperson_i d; . By “pardlelized,” we mean that the query can be run simultaneously on each partition, and the final res-
ult obtained merely by summing the results obtained for all partitions.

e Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as Partitioning devel opment continues.

http://bugs.mysql.com/30459
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_sum
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_count

Chapter 2. Partition Types

This section discusses the types of partitioning which are available in MySQL 6.0. These include:

* RANGE partitioning: Assigns rows to partitions based on column values falling within a given range. See Section 2.1, “RANGE
Partitioning”.

e LI ST partitioning: Similar to partitioning by range, except that the partition is selected based on columns matching one of a
set of discrete values. See Section 2.2, “L1 ST Partitioning”.

« HASH partitioning: A partition is selected based on the value returned by a user-defined expression that operates on column
values in rows to be inserted into the table. The function may consist of any expression valid in MySQL that yields a non-
negative integer value. See Section 2.3, “HASH Partitioning”.

¢ KEY partitioning: Similar to partitioning by hash, except that only one or more columns to be evaluated are supplied, and the
MySQL server provides its own hashing function. These columns can contain other than integer values, since the hashing func-
tion supplied by MySQL guarantees an integer result regardless of the column data type. See Section 2.4, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support explicit date partitioning,
which MySQL does not implement in 6.0. However, it is not difficult in MySQL to create partitioning schemes based on DATE,
TI VE, or DATETI ME columns, or based on expressions making use of such columns.

When partitioning by KEY or LI NEAR KEY, you can use a DATE, TI VE, or DATETI ME column as the partitioning column
without performing any modification of the column value. For example, this table creation statement is perfectly valid in MySQL:

CREATE TABLE menbers (
firstnane VARCHAR(25) NOT NULL,
| ast nane VARCHAR(25) NOT NULL,
user name VARCHAR(16) NOT NULL,
emai | VARCHAR(35),
j oi ned DATE NOT NULL

PARTI TI ON BY KEY(j oi ned)
PARTI TI ONS 6;

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value or NULL. If you wish to
use date-based partitioning by RANGE, LI ST, HASH, or LI NEAR HASH, you can simply employ a function that operates on a
DATE, Tl ME, or DATETI ME column and returns such avalue, as shown here:

CREATE TABLE nenbers
firstname VARCHAR(25) NOT NULL,
| ast name VARCHAR(25) NOT NULL,
user nane VARCHAR(16) NOT NULL,
email Vi
joi ned DATE NOT NULL

)

PARTI TI ON BY RANGE(YEAR(j oi ned)) (
PARTI TI ON p0 VALUES LESS THAN (1960),
PARTI TI ON pl VALUES LESS THAN (1970),
PARTI TI ON p2 VALUES LESS THAN (1980),
PARTI TI ON p3 VALUES LESS THAN (1990),
PARTI TI ON p4 VALUES LESS THAN MAXVALUE

Additional examples of partitioning using dates may be found here:

e Section 2.1, “RANGE Partitioning”
e Section 2.3, “HASH Partitioning”

e Section2.3.1, “LI NEAR HASH Partitioning”
For more complex examples of date-based partitioning, see:

e Chapter 4, Partition Pruning

e Section 2.5, “ Subpartitioning”

MySQL partitioning is optimized for use withthe TO_DAYS() and YEAR() functions. However, you can use other date and time

http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/time.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/time.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/time.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year

Partition Types

functions that return an integer or NULL, such as WEEKDAY() , DAYOFYEAR() , or MONTH() . See Date and Time Functions, for
more information about such functions.

It isimportant to remember — regardless of the type of partitioning that you use — that partitions are always numbered automatic-
ally and in sequence when created, starting with 0. When anew row isinserted into a partitioned table, it is these partition numbers
that are used in identifying the correct partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2,
and 3. For the RANGE and LI ST partitioning types, it is necessary to ensure that there is a partition defined for each partition num-
ber. For HASH partitioning, the user function employed must return an integer value greater than 0. For KEY partitioning, thisissue
istaken care of automatically by the hashing function which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for tables and databases. However,
you should note that partition names are not case-sensitive. For example, the following CREATE TABLE statement fails as shown:

nysql > CREATE TABLE t2 (val |NT)
-> PARTI TI ON BY LI ST(val)(
S PARTI TI ON nypart VALUES IN (1,3,5),
-> PARTI TI ON MyPart VALUES IN (2, 4, 6)

=>),
ERROR 1488 (HY000): Duplicate partition name nypart

Failure occurs because MySQL sees no difference between the partition names nypar t and MyPar t .

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero integer literal with no leading
zeroes, and may not be an expression such as0. 8E+01 or 6- 2, evenif it evaluatesto an integer value. Decimal fractions are not
alowed.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be used for creating each parti-
tion type; thisinformation may be found in CREATE TABLE Syntax.

2.1. RANCGE Partitioning

A table that is partitioned by range is partitioned in such away that each partition contains rows for which the partitioning expres-
sion value lies within a given range. Ranges should be contiguous but not overlapping, and are defined using the VALUES LESS
THAN operator. For the next few examples, suppose that you are creating a table such as the following to hold personnel records for
achain of 20 video stores, numbered 1 through 20:

CREATE TABLE enpl oyees (
id I NT NOT NULL,

f name VARCHAR(30)

| name VARCHAR(30

hired DATE NOT NULL DEFAULT ' 1970- 01- 01"
separ at ed DATE NOT NULL DEFAULT ' 9999- 12- 31"
job_code I NT NOT NULL,

store_id I NT NOT NULL

This table can be partitioned by range in a number of ways, depending on your needs. One way would beto usethest ore_i d
column. For instance, you might decide to partition the table 4 ways by adding a PARTI TI ON BY RANGE clause as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL

fnane VARCHAR(30)
| name VARCHAR(30),

hired DATE NOT NULL DEFAULT ' 1970- 01- 01"
separat ed DATE NOT NULL DEFAULT ' 9999- 12 31",
job_code I NT NOT NULL,

store_id | NT NOT NULL

)

PARTI TI ON BY RANGE (store_id) (
PARTI TI ON p0 VALUES LESS THAN (6),
PARTI TI ON pl VALUES LESS THAN (11}
PARTI TI ON p2 VALUES LESS THAN (16),
PARTI TI ON p3 VALUES LESS THAN (21)

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are stored in partition p0, to those
employed at stores 6 through 10 are stored in partition p1, and so on. Note that each partition is defined in order, from lowest to
highest. Thisis arequirement of the PARTI TI ON BY RANGE syntax; you can think of it as being analogousto aseriesof i f

el seif ... statementsin C or Javain thisregard.

It is easy to determine that anew row containing thedata(72, ' M chael ', 'Wdenius', '1998-06-25", NULL,

13) isinserted into partltlon p2, but what happens when your chain adds a21St store? Under this scheme, thereis no rule that cov-
ersarow whose st or e_i d isgreater than 20, so an error results because the server does not know where to placeit. You can
keep this from occurring by using a“catchall” VALUES LESS THAN clausein the CREATE TABLE statement that provides for
all values greater than highest value explicitly named:

CREATE TABLE enpl oyees (

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_weekday
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_dayofyear
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

id INT NOT NULL,

hi red DATE NOT NULL DEFAULT ' 1970 01-01'
separ at ed DATE NOT NULL DEFAULT ' 9999- 12" 31",
job_code I NT NOT NULL,

store_id I NT NOT NULL

)

PARTI TI ON BY RANGE (store id) (
PARTI TI ON p0 VALUES LESS THAN (6),
PARTI TI ON pl VALUES LESS THAN (11),
PARTI TI ON p2 VALUES LESS THAN (16) .
PARTI TI ON p3 VALUES LESS THAN MAXVALUE

Note

Another way to avoid an error when no matching value is found is to use the | GNORE keyword as part of the | N-
SERT statement. For an example, see Section 2.2, “LI ST Partitioning”. Also see | NSERT Syntax, for general inform-
ation about | GNORE.

MAXVAL UE represents an integer value that is always greater than the largest possible integer value (in mathematical language, it
serves as aleast upper bound). Now, any rowswhose st or e_i d column valueis greater than or equal to 16 (the highest value
defined) are stored in partition p3. At some point in the future — when the number of stores has increased to 25, 30, or more —
you can use an ALTER TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Chapter 3, Partition Man-
agement, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes — that is, based on ranges of j ob_code
column values. For example — assuming that two-digit job codes are used for regular (in-store) workers, three-digit codes are used
for office and support personnel, and four-digit codes are used for management positions — you could create the partitioned table
using the following:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR(30)
| name VARCHAR(30) ,
hired DATE NOT NULL DEFAULT ' 1970- 01-01'
separat ed DATE NOT NULL DEFAULT ' 9999- 1231
job_code I NT NOT NULL,
store_id I NT NOT NULL

)

PARTI TI ON BY RANGE (j ob_code) (
PARTI TI ON pO VALUES LESS THAN (100),
PARTI TI ON p1l VALUES LESS THAN (1000},
PARTI TI ON p2 VALUES LESS THAN (10000)

In thisinstance, all rows relating to in-store workers would be stored in partition p0, those relating to office and support staff in
p1, and those relating to managers in partition p2.

It isalso possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be able to evaluate the expres-
sion'sreturn value as part of aLESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on one of the two DATE columns
instead. For example, let us suppose that you wish to partition based on the year that each employee left the company; that is, the
value of YEAR(separ at ed) . An example of a CREATE TABLE statement that implements such a partitioning scheme is shown
here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f nane VARCHAR(30) ,
| name VARCHAR(30) ,
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code | NT,
store_id INT

)

PARTI TI ON BY RANGE (YEAR(separated)) (
PARTI TI ON pO VALUES LESS THAN (1991),
PARTI TI ON p1 VALUES LESS THAN (1996),
PARTI TI ON p2 VALUES LESS THAN (2001),
PARTI TI ON p3 VALUES LESS THAN MAXVALUE

In this scheme, for al employees who left before 1991, the rows are stored in partition pO; for those who left in the years 1991
through 1995, in p1; for those who left in the years 1996 through 2000, in p2; and for any workers who |eft after the year 2000, in
p3.

Range partitioning is particularly useful when:

http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

« Youwant or need to delete “old” data. If you are using the partitioning scheme shown immediately above, you can simply use
ALTER TABLE enpl oyees DROP PARTI TI ON pO; to deleteall rows relating to employees who stopped working for
the firm prior to 1991. (See ALTER TABLE Syntax, and Chapter 3, Partition Management, for more information.) For atable
with agreat many rows, this can be much more efficient than running a DELETE query such as DELETE FROM enpl oyees
VWHERE YEAR(separated) <= 1990;.

¢ You want to use a column containing date or time values, or containing values arising from some other series.

¢ You frequently run queries that depend directly on the column used for partitioning the table. For example, when executing a
query such as EXPLAI N PARTI TI ONS SELECT COUNT(*) FROM enpl oyees WHERE separ at ed BETWEEN
' 2000-01- 01" AND ' 2000-12-31" GROUP BY store_id;,MySQL can quickly determine that only partition p2
needs to be scanned because the remaining partitions cannot contain any records satisfying the WHERE clause. See Chapter 4,
Partition Pruning, for more information about how this is accomplished.

2.2. LI ST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. Asin partitioning by RANGE, each partition must be ex-
plicitly defined. The chief differenceisthat, in list partitioning, each partition is defined and selected based on the membership of a
column value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. Thisis done by using PARTI -
TI ON BY LI ST(expr) whereexpr isacolumn value or an expression based on a column value and returning an integer
value, and then defining each partition by meansof aVALUES | N (val ue_list),whereval ue_| i st isacomma-separated
list of integers.

Note

In MySQL 6.0, it is possible to match against only alist of integers (and possibly NULL — see Section 2.6, “How
MySQL Partitioning Handles NULL") when partitioning by LI ST.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular order. For more detailed
syntactical information, see CREATE TABLE Syntax.

For the examples that follow, we assume that the basic definition of the table to be partitioned is provided by the CREATE TABLE
statement shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR(30) ,
| name VARCHAR(30) ,
hired DATE NOT NULL DEFAULT '1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code | NT,
store_id INT

(Thisisthe same table used as a basis for the examplesin Section 2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store D Numbers
North 3,569 17

East 1, 2,10, 11, 19, 20
West 4,12,13, 14,18
Centra 7,8, 15,16

To partition this table in such away that rows for stores belonging to the same region are stored in the same partition, you could
usethe CREATE TABLE statement shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR(30) ,
| name VARCHAR(30) ,
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code I NT,
store_id INT

)
PARTI TI ON BY LI ST(store_id)

(
PARTI TI ON pNorth VALUES IN (3,5,6,9,17),
PARTI TI ON pEast VALUES IN (1,2, 10, 11, 19, 20),
PARTI TI ON pWest VALUES | N (4, 12, 13, 14, 18),
PARTI TI ON pCentral VALUES IN (7, 8, 15, 16)

http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/delete.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

)

This makesit easy to add or drop employee records relating to specific regionsto or from the table. For instance, suppose that all
storesin the West region are sold to another company. All rows relating to employees working at stores in that region can be de-
leted with the query ALTER TABLE enpl oyees DROP PARTI TI ON pWést ; , which can be executed much more efficiently
than the equivalent DELETE statement DELETE FROM enpl oyees WHERE store_id IN (4,12, 13, 14, 18);

Aswith RANGE partitioning, it is possible to combine LI ST partitioning with partitioning by hash or key to produce a composite
partitioning (subpartitioning). See Section 2.5, “ Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVAL UE; all expected values for the partitioning ex-
pression should be covered in PARTI TI ON ... VALUES IN (...) clauses. An| NSERT statement containing an unmatched
partitioning column value fails with an error, as shown in this example:

mysql > CREATE TABLE h2 (
-> cl | NT,
-> c2 I NT
->
-> PARTI TION BY LI ST(c1) (
-> PARTI TI ON pO VALUES I N (1, 4, 7),
-> PARTI TION pl VALUES IN (2, 5, 8)
->)
Query OK, 0 rows affected (0.11 sec)
nysql > I NSERT | NTO h2 VALUES (3, 5);
ERROR 1525 (HY000): TABLE HAS NO PARTITION FOR VALUE 3

When inserting multiple rows using asingle | NSERT statement, any rows coming before the row containing the unmatched value
areinserted, but any coming after it are not:

nysql > SELECT * FROM h2;

Enpty set (0.00 sec)

mysql > | NSERT | NTO h2 VALUES (4, 7), (3, 5), (6, 0);
ERROR 1525 (HY0O00): TABLE HAS NO PARTITION FOR VALUE 3
rrysql > SELECT * FROM h2;

1 rowm set (0.00 sec)

Y ou can cause this type of error to be ignored by using the | GNORE key word. If you do so, rows containing unmatched partition-
ing column values are not inserted, but any rows with matching values are inserted, and no errors are reported:

nysql > TRUNCATE h2;

Query OK, 1 row affected (0.00 sec)

nysql > SELECT * FROM h2;

Enpty set (0.00 sec)

nysql > | NSERT | GNORE | NTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)

Records: 5 Duplicates: 2 Warnings: 0

rrysql > SELECT * FROM h2;

2.3. HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined number of partitions. With
range or list partitioning, you must specify explicitly into which partition a given column value or set of column valuesisto be
stored; with hash partitioning, MySQL takes care of thisfor you, and you need only specify a column value or expression based on
acolumn value to be hashed and the number of partitions into which the partitioned table is to be divided.

To partition atable using HASH partitioning, it is necessary to append to the CREATE TABLE statement a PARTI TI ON BY
HASH (expr) clause, whereexpr isan expression that returns an integer. This can simply be the name of a column whose type
isone of MySQL's integer types. In addition, you will most likely want to follow thiswith a PARTI TI ONS numclause, where
numis a positive integer representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing on the st or e_i d column and isdivided into 4 partitions:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR(30)
| name V.
hi red DATE NOT NULL DEFAULT ' 1970 01-01'
separ at ed DATE NOT NULL DEFAULT ' 9999- 12- 31

http://dev.mysql.com/doc/refman/6.0/en/delete.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

j ob_code I NT,
store_id INT

)
PARTI TI ON BY HASH(store_i d)
PARTI TI ONS 4;

If you do not include a PARTI TI ONS clause, the number of partitions defaultsto 1.
Using the PARTI TI ONS keyword without a number following it resultsin a syntax error.

Y ou can also use an SQL expression that returns an integer for expr . For instance, you might want to partition based on the year
in which an employee was hired. This can be done as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR(30) ,
| name VARCHAR(30) ,
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code I NT,
store_id INT

)
PARTI TI ON BY HASH(YEAR(hired))
PARTI TI ONS 4;

expr must return a non-constant, non-random integer value (in other words, it should be varying but deterministic), and must not
contain any prohibited constructs as described in Chapter 5, Restrictions and Limitations on Partitioning. Y ou should also keep in
mind that this expression is evaluated each time arow isinserted or updated (or possibly deleted); this means that very complex ex-
pressions may give rise to performance issues, particularly when performing operations (such as batch inserts) that affect a great
many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value increases or decreases con-
sistently with the column value, as thisallows for “pruning” on ranges of partitions. That is, the more closely that the expression
varies with the value of the column on which it is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, wheredat e_col isacolumn of type DATE, then the expression TO_DAYS(dat e_col) issaidto vary directly
with the value of dat e_col , because for every change in the value of dat e_col , the value of the expression changesin a con-
sistent manner. The variance of the expression YEAR(dat e_col) with respect to dat e_col isnot quite as direct as that of
TO_DAYS(dat e_col), because not every possible changein dat e_col produces an equivaent changein

YEAR(dat e_col). Evenso, YEAR(dat e_col) isagood candidate for a hashing function, because it varies directly with a
portion of dat e_col and thereisno possible changein dat e_col that produces a disproportionate change in

YEAR(dat e_col).

By way of contrast, suppose that you have acolumn namedi nt _col whosetypeis| NT. Now consider the expression
PON(5-int_col,3) + 6. Thiswould beapoor choice for ahashing function because achangein thevalue of i nt _col is
not guaranteed to produce a proportional change in the value of the expression. Changing thevaue of i nt _col by agiven
amount can produce by widely different changes in the value of the expression. For example, changing i nt _col from5 to 6 pro-
duces achange of - 1 in the value of the expression, but changing the value of i nt _col from 6 to 7 produces a change of - 7 in
the expression value.

In other words, the more closely the graph of the column value versus the value of the expression follows a straight line as traced
by the equation y=nx where n is some nonzero constant, the better the expression is suited to hashing. This has to do with the fact
that the more nonlinear an expression is, the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determining which of such expres-
sions are suitable can be quite difficult and time-consuming. For this reason, the use of hashing expressions involving multiple
columnsis not particularly recommended.

When PARTI TI ON BY HASHis used, MySQL determines which partition of numpartitions to use based on the modulus of the
result of the user function. In other words, for an expression expr , the partition in which the record is stored is partition number N,
whereN = MOD(expr, num . For example, supposetablet 1 isdefined asfollows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col 3 DATE)
PARTI TI ON BY HASH(YEAR(col 3))
PARTI TI ONS 4;

If youinsert arecordintot 1 whose col 3 valueis' 2005- 09- 15' , then the partition in which it is stored is determined as fol-
lows:

YEAR(' 2005- 09- 01'), 4)
MOD(2005, 4)
1

MySQL 6.0 also supports a variant of HASH partitioning known as linear hashing which employs a more complex algorithm for

8

http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_pow

Partition Types

determining the placement of new rows inserted into the partitioned table. See Section 2.3.1, “L1 NEAR HASH Partitioning”, for a
description of this agorithm.

The user function is evaluated each time arecord is inserted or updated. It may also — depending on the circumstances — be eval-
uated when records are deleted.

Note

If atable to be partitioned has a UNI QUE key, then any columns supplied as arguments to the HASH user function or
totheKEY'scol utm_| i st must be part of that key.

2.3.1. LI NEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes alinear powers-of-two al-
gorithm whereas regular hashing employs the modulus of the hashing function's value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of the LI NEAR keyword in
the PARTI TI ON BY clause, as shown here:
CREATE TABLE enpl oyees (

id IINT NOT NULL,

f nane VARCHAR(30)

| nane VARCHAR(30)

hired DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT ' 9999-12-31'
j ob_code | NT,

store_id INT

)
PARTI TI ON BY LI NEAR HASH(YEAR(hired))
PARTI TI ONS 4;

Given an expression expr , the partition in which the record is stored when linear hashing is used is partition number N from
among numpartitions, where N is derived according to the following algorithm:

1. Findthe next power of 2 greater than num We call thisvalue V; it can be calculated as:
V = POWER(2, CEILING(LOG 2, nun)))

(For example, suppose that numis 13. Then LOG(2, 13) is3.7004397181411. CEl LI NG(3. 7004397181411) is4, and
V=PONER(2, 4) , whichis 16.)

2. SaN=F(colum_list)& (V-1).
3. WhileN>=num

« SetV=CEIL(V/2)

e SetN=N& (V-1

For example, suppose that thetablet 1, using linear hash partitioning and having 6 partitions, is created using this statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTI TI ON BY LI NEAR HASH(YEAR(col 3))
PARTI TI ONS 6;

Now assume that you want to insert two recordsintot 1 having thecol 3 columnvaues' 2003- 04- 14" and' 1998- 10- 19" .
The partition number for the first of these is determined as follows:

V = POAER(2, CEILING LOX2,6))
YEAR(' 2003-04-14") & (8 - 1)
= 5003 &7

) =8

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is cal culated as shown here:

8
YEAR(' 1998-10-19') & (8-1)
1998 & 7

is TRUE: additional step required)
CEILING8 / 2)
3

is FALSE: record stored in partition #2)

http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_log
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_ceiling
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_power

Partition Types

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of partitions is made much faster,
which can be beneficial when dealing with tables containing extremely large amounts (terabytes) of data. The disadvantage is that
dataislesslikely to be evenly distributed between partitions as compared with the distribution obtained using regular hash parti-
tioning.

2.4. KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the
hashing function for key partitioning is supplied by the MySQL server. This function is based on the same agorithm as PASS-
WORD() .

The syntax rulesfor CREATE TABLE ... PARTI TI ON BY KEY aresimilar to those for creating atable that is partitioned by
hash. The major differences are that:

.

KEY is used rather than HASH.

KEY takes only alist of one or more column names. The column or columns used as the partitioning key must comprise part or
all of thetable's primary key, if the table has one.

KEY takes alist of zero or more column names. Where no column name is specified as the partitioning key, the table's primary
key is used, if there is one. For example, the following CREATE TABLE statement isvalid in MySQL 6.0:

CREATE TABLE k1 (
id INT NOT NULL PRI MARY KEY,
name VARCHAR(20)

PARTI TI ON BY KEY()
PARTI TI ONS 2;

If thereis no primary key but there is a unique key, then the unique key is used for the partitioning key:

CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNI QUE KEY (i d)

)
PARTI Tl ON BY KEY()
PARTI TI ONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement would fall.

In both of these cases, the partitioning key isthei d column, even though it is not shown in the output of SHOW CREATE TA-
BLE or inthe PARTI TI ON_EXPRESSI ON column of the | NFORVATI ON_SCHENA. PARTI TI ONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to integer or NULL values.
For example, the following CREATE TABLE statement is valid:

CREATE TABLE tml (
sl CHAR(32) PRI MARY KEY

)
PARTI TI ON BY KEY(s1)
PARTI TI ONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified.
Note

In this case, simply using PARTI TI ON BY KEY() would also be valid and have the same effect as PARTI TI ON
BY KEY(sl),sincesl isthetable'sprimary key.

For additional information about this issue, see Chapter 5, Restrictions and Limitations on Partitioning.
Important
For a key-partitioned table, you cannot executean ALTER TABLE DROP PRI MARY KEY, asdoing so generates

theerror ERROR 1466 (HY000): FIELD IN LIST OF FIELDS FOR PARTITION FUNCTI ON NOT FOUND IN TA-
BLE.

It isalso possible to partition atable by linear key. Here is a simple example:

CREATE TABLE tk

(
col 1 INT NOT NULL,

10

http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

col 2 CHAR(5),
col 3 DATE

)
PARTI TI ON BY LI NEAR KEY (col 1)
PARTI TI ONS 3;

Using LI NEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the partition number being derived
using a powers-of-two algorithm rather than modulo arithmetic. See Section 2.3.1, “L1 NEAR HASH Partitioning”, for a description
of this algorithm and itsimplications.

2.5. Subpartitioning

Subpartitioning — also known as composite partitioning — is the further division of each partition in a partitioned table. For ex-
ample, consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(purchased))
SUBPARTI TI ON BY HASH(TO_DAYS(pur chased))
SUBPARTI TI ONS 2 (
PARTI TI ON pO VALUES LESS THAN (1990),
PARTI TI ON p1 VALUES LESS THAN (2000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE

Tablet s has 3 RANGE partitions. Each of these partitions— p0, p1, and p2 — isfurther divided into 2 subpartitions. In effect,
theentiretableisdividedinto3 * 2 = 6 partitions. However, due to the action of the PARTI TI ON BY RANGCE clause, the
first 2 of these store only those records with a value less than 1990 in the pur chased column.

In MySQL 6.0, it is possible to subpartition tables that are partitioned by RANGE or LI ST. Subpartitions may use either HASH or
KEY partitioning. Thisis also known as composite partitioning.

It is also possible to define subpartitions explicitly using SUBPARTI T ON clauses to specify options for individual subpartitions.
For example, a more verbose fashion of creating the sametablet s as shown in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(purchased))
SUBPARTI TI ON BY HASH(TO DAYS(purchased)) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI Tl ON sO,
SUBPARTI TI ON s1

D

PARTI TI ON pl VALUES LESS THAN (2000) (
SUBPARTI TI ON s2,
SUBPARTI TI ON s3

)

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s4,
SUBPARTI TI ON s5

)

Some syntactical items of note:

e Each partition must have the same number of subpartitions.

« If you explicitly define any subpartitions using SUBPARTI TI ON on any partition of a partitioned table, you must define them
all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(purchased))
SUBPARTI TI ON BY HASH(TO DAYS(pur chased)) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI Tl ON sO,
SUBPARTI TI ON s1

)
PARTI TI ON pl1 VALUES LESS THAN (2000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s2,
SUBPARTI TI ON s3

)

This statement would still fail even if it included a SUBPARTI TI ONS 2 clause.

¢ Each SUBPARTI Tl ON clause must include (at a minimum) a name for the subpartition. Otherwise, you may set any desired
option for the subpartition or alow it to assume its default setting for that option.

¢ Subpartition names must be unique across the entire table. For example, the following CREATE TABLE statement isvalid in

11

http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Types

MySQL 6.0:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(pur chased)
SUBPARTI TI ON BY HASH(TO DAYS(pur chased))
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI Tl ON sO,
SUBPARTI TI ON s1

),

PARTI TI ON p1 VALUES LESS THAN (2000) (
SUBPARTI TI ON s2,
SUBPARTI TI ON s3

),

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s4,
SUBPARTI TI ON s5

Subpartitions can be used with especially large tables to distribute data and indexes across many disks. Suppose that you have 6
disks mounted as/ di skO0,/ di sk1,/di sk2, and so on. Now consider the following example:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(purchased))
SUBPARTI TI ON BY HASH(TO DAYS(purchased)) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI TI ON sO
DATA DI RECTORY = '/di sk0/ dat a'
I NDEX DI RECTORY = '/diskO/idx",
SUBPARTI TI ON s1
DATA DI RECTORY = '/di skl1/data'
I NDEX DI RECTORY = '/di sk1/i dx'

e
PARTI TI ON pl VALUES LESS THAN (2000) (
SUBPARTI TI ON s2
DATA DI RECTCRY = '/ di sk2/ dat a'
I NDEX DI RECTORY = '/disk2/i dx',
SUBPARTI Tl ON s3
DATA DI RECTCRY = '/ di sk3/ dat a'
I NDEX DI RECTORY = '/ di sk3/i dx'

),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI TI ON s4
DATA DI RECTORY = '/ di sk4/ dat a'
I NDEX DI RECTORY = '/disk4/idx',
SUBPARTI TI ON s5
DATA DI RECTORY = '/ di sk5/ dat a'
) I NDEX DI RECTORY = '/di sk5/i dx'
)

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations are possible; another ex-
ample might be:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE(YEAR(pur chased))
SUBPARTI TI ON BY HASH(TO DAYS(pur chased)) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI Tl ON s0Oa
DATA DI RECTORY = '/di skO'
I NDEX DI RECTORY = '/disk1l',
SUBPARTI TI ON sOb
DATA DI RECTORY = '/ di sk2'
| NDEX DI RECTORY = '/di sk3'

e
PARTI TI ON pl VALUES LESS THAN (2000) (
SUBPARTI TI ON sla
DATA DI RECTCRY = '/ di sk4/ dat a'
I NDEX DI RECTORY = '/ di sk4/ i dx'
SUBPARTI TI ON s1b
DATA DI RECTORY = '/ di sk5/ dat a'
I'NDEX DI RECTORY = '/ di sk5/ i dx'

),

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s2a,
SUBPARTI TI ON s2b

)
IE

Here, the storageis asfollows:

¢ Rowswith pur chased dates from before 1990 take up a vast amount of space, so are split up 4 ways, with a separate disk
dedicated to the data and to the indexes for each of the two subpartitions (s Oa and s0b) making up partition pO. In other
words:

12

Partition Types

* Thedatafor subpartition sOa is stored on/ di skO.
e Theindexesfor subpartition sOa are stored on/ di sk1.
» Thedatafor subpartition sOb isstored on/ di sk2.
» Theindexesfor subpartition sOb are stored on/ di sk3.

* Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as those from before 1990. These
are split between 2 disks (/ di sk4 and/ di sk5) rather than 4 disks as with the legacy records stored in pO:

» Dataand indexes belonging to p1'sfirst subpartition (s1a) arestored on/ di sk4 —thedatain/ di sk4/ dat a, and the
indexesin/ di sk4/i dx.

» Dataand indexes belonging to p1's second subpartition (s1b) are stored on/ di sk5 —thedatain/ di sk5/ dat a, and
theindexesin/ di sk5/ i dx.

* Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space as required by either of the
two previous ranges. Currently, it is sufficient to store al of these in the default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a point where the default loca-
tion no longer provides sufficient space, the corresponding rows can be moved using an ALTER TABLE ... REORGANI ZE
PARTI TI ON statement. See Chapter 3, Partition Management, for an explanation of how this can be done.

The DATA DI RECTORY and | NDEX DI RECTORY options are disallowed whenthe NO_DI R_| N_CREATE server SQL modeis
in effect. Thisistrue for partitions and subpartitions.

2.6. How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether it is a column value or the
value of a user-supplied expression. Even though it is permitted to use NULL as the value of an expression that must otherwise
yield an integer, it isimportant to keep in mind that NULL is not a number. MySQL's partitioning implementation treats NULL as
being less than any non-NULL value, just as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce behavior which you do not ex-
pect if you are not prepared for it. This being the case, we discuss in this section how each MySQL partitioning type handles NULL
values when determining the partition in which arow should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert arow into atable partitioned by RANGE such that the column value
used to determine the partition is NULL, the row isinserted into the lowest partition. For example, consider these two tablesin a
database named p, created as follows:

mysql > CREATE TABLE t1 (
cl |

- [\ﬂ'Y

-> c2 VARCHAR(20)

.)

-> PARTI TI ON BY RANGE(c1) (

S PARTI TI ON p0 VALUES LESS THAN (0),

-> PARTI TI ON pl VALUES LESS THAN (10),

-> PARTI TI ON p2 VALUES LESS THAN MAXVALUE

==)1
Query OK, O rows affected (0.09 sec)
nysql > CREATE TABLE t2 (

-> cl INT,

-> c2 VARCHAR(20)

->)

-> PARTI TI ON BY RANGE(c1) (

-> PARTI TI ON pO VALUES LESS THAN (-5),
-> PARTI TI ON pl VALUES LESS THAN (0),
-> PARTI TI ON p2 VALUES LESS THAN (10),

-= PARTI TI ON p3 VALUES LESS THAN MAXVALUE
=)3
Query OK, 0 rows affected (0.09 sec)

Y ou can see the partitions created by these two CREATE TABLE statements using the following query against the PARTI TI ONS
tablein the | NFORVATI ON_SCHENA database:

nysql > SELECT TABLE NAVME, PARTI TI ON_NAVE, TABLE ROWS, AVG ROW LENGTH, DATA LENGTH
> FROM | NFORNATI ON_SCHEMA. PARTI TI ONS

> WHERE TABLE SCHEWVA = 'p' AND TABLE NAMVE LIKE 't _';
+ +

docoococooooooo droooocooooooooooodmocscoooooooodioooocoooo00o 000 o coococoooooooo 4
| TABLE_NANE | PARTI TI ON_NAVE | TABLE ROAS | AVG ROWLENGTH | DATA LENGTH |
focoocacoonaa focooocaccocnoacnoa focoocacoonaa focoocococnoacnon fooooooocconaa +
t1	pO	0	0	0
t1	pl	0	0	0
t1	p2	0	0	0
t2	po	0	0	0

13

http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html#sqlmode_no_dir_in_create
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html

Partition Types

7 rows in set (0.00 sec)

(For more information about this table, see The | NFORVATI ON_SCHENMA PARTI T1 ONS Table.) Now let us populate each of
these tables with a single row containing a NULL in the column used as the partitioning key, and verify that the rows were inserted
using apair of SELECT statements:

mysqgl > I NSERT I NTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)
rrysql > | NSERT INTO t2 VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)
rrysql > SELECT * FROM t

1 rowm set (0. 00 sec)
mysql > SELECT * FROM t 2;

1 rowm set (0. 00 sec)

Y ou can see which partitions are used to store the inserted rows by rerunning the previous query against | NFORVA-
TI ON_SCHENA. PARTI TI ONS and inspecting the output:

nysql > SELECT TABLE NAME, PARTI TI ON_NAVE, TABLE ROAS, AVG ROW LENGTH, DATA LENGTH
> FROM | NFORVATI ON_SCHEMA. PARTI TI ONS
> VHERE TABLE SOHEVA = 'p' AND TABLE NAVE LIKE |

S e iy g i gy Sy fmoococsoosoooo +

| TABLE NAVE | PARTI TI ON_NANE | TABLE_ROAS | AVG ROW LENGTH | DATA LENGTH |

.
0
0
0
0
0
0
0
0
0
0

+
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0

+
b
0
0
0
0
0
0
0
0
0
0
0
0

o
o
S —

7 rows in set (0.01 sec)

Y ou can also demonstrate that these rows were stored in the lowest partition of each table by dropping these partitions, and then re-
running the SELECT statements:

nysql > ALTER TABLE t1 DROP PARTI TI ON pO;
Query OK, 0 rows affected (0.16 sec)
nysql > ALTER TABLE t2 DROP PARTI TI ON pO;
Query OK, 0 rows affected (0.16 sec)
nysql > SELECT * FROM t 1;

Enpty set (0.00 sec)

mysql > SELECT * FROM t 2;

Enpty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTI Tl O\, see ALTER TABLE Syntax.)

NULL isalso treated in thisway for partitioning expressions that use SQL functions. Suppose that we define a table using a CRE-
ATE TABLE statement such as this one:

CREATE TABLE tndate (
id I NT,
dt DATE

)

PARTI TI ON BY RANGE(YEAR(dt)) (
PARTI TI ON p0 VALUES LESS THAN (1990),
PARTI TI ON pl VALUES LESS THAN (2000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE

)

Aswith other MySQL functions, YEAR(NULL) returns NULL. A row with adt column value of NULL is treated as though the
partitioning expression evaluated to a value less than any other value, and so isinserted into partition pO.

Handling of NULL with LI ST partitioning. A tablethat is partitioned by LI ST admits NULL valuesif and only if one of its par-
titionsis defined using that value-list that contains NULL. The converse of thisisthat atable partitioned by L1 ST which does not
explicitly use NULL in avaluelist rejects rows resulting in a NULL value for the partitioning expression, as shown in this example:

nysql > CREATE TABLE tsi (
I

== cl I NT,

-> c2 VARCHAR(20)

->)

-> PARTI TI ON BY LIST(c1) (

-> PARTI TI ON pO VALUES IN (0, 3, 6),
-> PARTI TION pl1 VALUES IN (1, 4, 7),
-> PARTI TI ON p2 VALUES IN (2, 5, 8)

14

http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year

Partition Types

->);
Query OK, 0 rows affected (0.01 sec)

nysql > I NSERT | NTO ts1 VALUES (9, 'nothra');

ERROR 1504 (HYOO00): TABLE HAS NO PARTITION FOR VALUE 9
nysql > I NSERT | NTO ts1 VALUES (NULL, 'nothra');
ERROR 1504 (HYO00): TABLE HAS NO PARTITION FOR VALUE NULL

Only rows having ac 1 value between 0 and 8 inclusive can beinserted intot s 1. NULL falls outside this range, just like the num-
ber 9. We can create tablest s2 and t s3 having value lists containing NULL, as shown here:

nysql > CREATE TABLE ts2 (
-> cl

- c2 VARCHAR(20)

->

-> PARTI TION BY LIST(cl) (
-> PARTI TI ON pO VALUES IN (0, 3, 6),
-> PARTI TION pl VALUES IN (1, 4, 7),
-> PARTI TI ON p2 VALUES IN (2, 5, 8),
-> PARTI TI ON p3 VALUES I N (NULL)
-> ;

Query OK, O rows affected (0.01 sec)

nysql > CREATE TABLEts3(
-> cl INT
-> c2 VARCHAR(20)
_>)
-> PARTITION BY LIST(cl1) (
-> PARTI TI ON pO VALUES IN (0, 3, 6),
-> PARTI TION pl1 VALUES IN (1, 4, 7, NULL),
-> PARTI TI ON p2 VALUES IN (2, 5, 8)

_>)

Query oK 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other value. For example, both
VALUES IN (NULL) and VALUES I N (1, 4, 7, NULL) arevalid,asare VALUES I N (1, NULL, 4, 7),VALUES
IN (NULL, 1, 4, 7),andsoon.Youcaninsertarow having NULL for column c1 into each of thetablest s2 andt s3:

mysql > | NSERT | NTO ts2 VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)
mysqgl > I NSERT | NTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against | NFORVATI ON_SCHEMA. PARTI Tl ONS, you can determine which partitions were used
to store the rows just inserted (we assume, as in the previous examples, that the partitioned tables were created in the p database):

nysql > SELECT TABLE NAME, PARTI TI ON_NAME, TABLE ROWS, AVG ROW LENGTH, DATA LENGTH
> FROM | NFORVATI ON SCHEI\/A PARTI Tl ONS
> WHERE TABLE_ SCHEMVA = p AND TABLE NAME LI KE '
$mccooocosooo dmccooococooococodmoccococosooimosoooocsoooaoas

.
.
.
.
.
.
.
.
.
.
.
I

+

+
| TABLE_NAME | PARTI TI ON_NAVE | TABLE_ROWS | AVG_ROW LENGTH | DATA LENGTH |
B B B B R +
ts2	pO	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	pO	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
PJooccooccoosoo Jooccooccooccoosoo PJooccooccoosoo Joocccoccooccoosoo fooccooccoooco +

7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by deleting these partitions and
then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for tables partitioned by HASH or
KEY. In these cases, any partition expression that yieldsa NULL value is treated as though its return value were zero. We can verify
this behavior by examining the effects on the file system of creating atable partitioned by HASH and populating it with arecord
containing appropriate values. Suppose that you have atablet h (also in the p database) created using the following statement:

nmysql > CREATE TABLE th (
-> cl INT,

-= c2 VARCHAR(20)

->

-> PARTI TI ON BY HASH(c1)

-> PARTI TI ONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed like this:

nysql > SELECT TABLE_NAME, PARTI TI ON_NANME, TABLE_ROWS, AVG_ROW LENGTH, DATA_LENGTH
> FROM | NFORVATI O\I_SCHEMA PARTI TI ONS
> W-IERE TABLE_SCHEMA = p AND TABLE NAME ="'t h'

__ e e e e e - -
| TABLE_NANMVE | PARTI TI ON_NANVE | TABLE_ROWS | AVG_ROW LENGTH | DATA_LENGTH |
Smccocooossooo Smccoooccsoooocss dmccococccocodmoococcsosocosooo Smccococosooac +
| th | pO | 0 | 0| 0|
| th | pl | 0| 0| 0|
Smocooomooooo Smccooomoooooocss Smocooomooooo Smocooocosoooocss Smccooocooooac +

2 rows in set (0.00 sec)

Note that TABLE_ROWS for each partition is 0. Now insert two rowsinto t h whose c1 column values are NULL and O, and veri-

15

http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/select.html

Partition Types

fy that these rows were inserted:

mysql > | NSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

nysql > SELECT * FROM t h;

foco=co fooccooc=o +

| c1 | c2 |

Poco=co Pooccooc=o +

| NULL | nothra

| 0| gigan |

Foocoooo Fooccooooo +

2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD Nisaways NULL. For tables that are partitioned by HASH or KEY, this res-
ult istreated for determining the correct partition as 0. Checking the | NFORVATI ON_SCHEMA. PARTI TI ONS table once again,
we can see that both rows were inserted into partition pO:

nysql > SELECT TABLE NAVME, PARTI TI ON_NAVE, TABLE ROWS, AVG ROW LENGTH, DATA LENGTH
> FROM | NFORNATI ON_SCHEMA. PARTI TI ONS
> WHERE TABLE SCHEMA = 'p' AND TABLE NAME ='th';
+ +

docoococooooooo droooocooooooooooodmocscoooooooodioooocoooono0000 o coococoooooooo 4
| TABLE_NANE | PARTI TI ON_NAVE | TABLE ROAS | AVG ROWLENGTH | DATA LENGTH |
focoocacoonaa focooocaccocnoacnoa focoocacoonaa focoocococnoacnon fooooooocconaa +
| th | po | 2 | 20 | 20 |
| th | pl | 0| 0| 0|
fcocosoooooo fcccocoococooooooo fcocosoooooo fococcocoococcooooooo S +

2 rows in set (0.00 sec)

If you repeat this example using PARTI TI ON BY KEY in place of PARTI TI ON BY HASH in the definition of the table, you can
verify easily that NULL is also treated like O for this type of partitioning as well.

16

http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html

Chapter 3. Partition Management

MySQL 6.0 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine, merge, or split existing

partitions. All of these actions can be carried out using the partitioning extensionsto the ALTER TABLE command (see ALTER
TABLE Syntax, for syntax definitions). There are also ways to obtain information about partitioned tables and partitions. We dis-
cuss these topics in the sections that follow.

e For information about partition management in tables partitioned by RANGE or LI ST, see Section 3.1, “Management of RANCGE
and LI ST Partitions”.

¢ For adiscussion of managing HASH and KEY partitions, see Section 3.2, “Management of HASH and KEY Partitions”.

e See Section 3.4, “Obtaining Information About Partitions’, for a discussion of mechanisms provided in MySQL 6.0 for obtain-
ing information about partitioned tables and partitions.

e For adiscussion of performing maintenance operations on partitions, see Section 3.3, “Maintenance of Partitions’.

Note

In MySQL 6.0, al partitions of a partitioned table must have the same number of subpartitions, and it is not possible
to change the subpartitioning once the table has been created.

To change atable's partitioning scheme, it is necessary only to usethe ALTER TABLE command withapartiti on_opti ons
clause. This clause has the same syntax as that as used with CREATE TABLE for creating a partitioned table, and always begins
with the keywords PARTI TI ON BY. For example, suppose that you have a table partitioned by range using the following CREATE
TABLE statement:

CREATE TABLE trb3 (id INT, nane VARCHAR(50), purchased DATE)
PARTI TI ON BY RANGE(YEAR(purchased)) (
PARTI TI ON p0 VALUES LESS THAN (1990),
PARTI TI ON p1 VALUES LESS THAN (1995),
PARTI TI ON p2 VALUES LESS THAN (2000),
PARTI TI ON p3 VALUES LESS THAN (2005)

)

To repartition this table so that it is partitioned by key into two partitions using the i d column value as the basis for the key, you
can use this statement:

ALTER TABLE trb3 PARTITI ON BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CREATE TABLE trb3 PAR-
TI TION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENG NE = ... changesonly the storage engine used by the table, and leaves the table's partitioning
schemeintact. Use ALTER TABLE ... REMOVE PARTI TI ONI NGto remove atable's partitioning. See ALTER TABLE Syn-
tax.

Important

Only asingle PARTI TI ON BY, ADD PARTI TI ON, DROP PARTI Tl ON, REORGANI ZE PARTI TI O\, or CO-
ALESCE PARTI Tl ONclause can be used in agiven ALTER TABLE statement. If you (for example) wish to drop a
partition and reorganize atable's remaining partitions, you must do so in two separate ALTER TABLE statements
(oneusing DROP PARTI TI ON and then a second one using REORGANI ZE PARI TI Tl ONS).

3.1. Management of RANGE and LI ST Partitions

Range and list partitions are very similar with regard to how the adding and dropping of partitions are handled. For this reason we
discuss the management of both sorts of partitioning in this section. For information about working with tables that are partitioned
by hash or key, see Section 3.2, “Management of HASH and KEY Partitions’. Dropping a RANGE or LI ST partition is more
straightforward than adding one, so we discuss this first.

Dropping a partition from atable that is partitioned by either RANGE or by LI ST can be accomplished using the ALTER TABLE
statement with aDROP PARTI Tl ON clause. Hereis a very basic example, which supposes that you have already created a table
which is partitioned by range and then populated with 10 records using the following CREATE TABLE and | NSERT statements:

nysql > CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)

-> PARTI TI ON BY RANGE(YEAR(purchased)) (
> PARTI TI ON pO VALUES LESS THAN (1990),
-> PARTI TI ON p1 VALUES LESS THAN (1995),

17

http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html

Partition Management

-> PARTI TI ON p2 VALUES LESS THAN (2000),
-> PARTI TI ON p3 VALUES LESS THAN (2005)
->) :

Query OK, 0 rows affected (0.01 sec)

nmysqgl > | NSERT | NTO tr VALUES

' desk organiser', '2003-10-15"),

'CD player', '1993-11-05'),

"TV set’, '1996-03-10"),

' bookcase', '1982-01-10'),

, 'exercise bike', '2004-05-09'),

‘sofa', '1987-06-05"),

' popcorn maker', '2001-11-22"),

“aquarium , '1992-08-04'),

"study desk', '1984-09-16'),
"lava lanp', '1998-12-25');

rows affected (0.01 sec)

POO~NOUDWNE

©

(
(
(
(
(
-> (
(
(
(
(
0

Query oK, 1

Y ou can see which items should have been inserted into partition p2 as shown here:

nysql > SELECT * FROM tr
-> WHERE purchased BETWEEN ' 1995-01-01' AND ' 1999-12-31' ;
+

ocoooo dooccooccoocdmoncoooooaos +
| id | nane | purchased |
Homm - - Fommmm e m - R +
| 3| TV set | 1996-03-10 |
| 10 | lava lanp | 1998-12-25 |
Focosco Focccoocosooo fooccooccoasos +

2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

nysql > ALTER TABLE tr DROP PARTI TI ON p2;
Query OK, 0 rows affected (0.03 sec)

It is very important to remember that, when you drop a partition, you also delete all the data that was stored in that partition. You
can see that thisisthe case by re-running the previous SELECT query:

mysql > SELECT * FROM tr WHERE purchased
-> BETWEEN ' 1995- 01-01' AND ' 1999-12-31';
Enpty set (0.00 sec)

Because of this, you must have the DROP privilege for atable before you can execute ALTER TABLE ... DROP PARTI TI ON
on that table.

If you wish to drop all datafrom al partitions while preserving the table definition and its partitioning scheme, use the TRUNCATE
TABLE command. (See TRUNCATE Syntax.)

If you intend to change the partitioning of atable without losing data, use ALTER TABLE ... REORGANI ZE PARTI Tl ONin-
stead. See below or in ALTER TABLE Syntax, for information about REORGANI ZE PARTI TI ON.

If you now execute a SHOW CREATE TABLE command, you can see how the partitioning makeup of the table has been changed:

nysql > SHOW CREATE TABLE tr\G
EEEE R EEEEREEEEREREEEREERESESE] 1 r ow EEEE R R EEEREEEEEREREEEREEEESESE]
Table: tr
Create Tabl e: CREATE TABLE “tr- (
“id int(11) default NULL,
“name’ varchar (50) default NULL,
“purchased” date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=| ati nl
PARTI TI ON BY RANGE (YEAR(purchased)) (
PARTI TI ON p0 VALUES LESS THAN (1990) ENG NE
PARTI TI ON p1 VALUES LESS THAN (1995) ENG NE
PARTI TI ON p3 VALUES LESS THAN (2005) ENG NE

=z
g4

1 rowin set (0.01 sec)

When you insert new rows into the changed table with pur chased column values between' 1995- 01- 01" and
' 2004- 12- 31" inclusive, those rows will be stored in partition p3. You can verify this as follows:

nysql > I NSERT | NTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)
nmysql > SELECT * FROM tr WHERE purchased

-> BETWEEN ' 1995-01-01' AND ' 2004-12-31';

! !

pencil holder	1995-07-12
desk organiser	2003-10-15
exercise bike	2004-05-09
popcorn nmaker	2001-11-22
R L +

4 rows in set (0.00 sec)
nysql > ALTER TABLE tr DROP PARTI TI ON p3;

18

http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/truncate.html
http://dev.mysql.com/doc/refman/6.0/en/truncate.html
http://dev.mysql.com/doc/refman/6.0/en/truncate.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html

Partition Management

Query OK, 0 rows affected (0.03 sec)
mysqgl > SELECT * FROM tr WHERE purchased

-> BETWEEN ' 1995- 01-01' AND ' 2004-12-31";
Enpty set (0.00 sec)

Note that the number of rows dropped from the table asaresult of ALTER TABLE ... DROP PARTI Tl ONisnot reported by
the server asit would be by the equivalent DELETE query.

Dropping LI ST partitions uses exactly the same ALTER TABLE ... DROP PARTI Tl ON syntax as used for dropping RANGE
partitions. However, there is one important difference in the effect this has on your use of the table afterward: Y ou can no longer
insert into the table any rows having any of the values that were included in the value list defining the deleted partition. (See Sec-
tion 2.2, “LI ST Partitioning”, for an example.)

To add anew range or list partition to a previously partitioned table, usethe ALTER TABLE ... ADD PARTI Tl ON statement.
For tables which are partitioned by RANGE, this can be used to add a new range to the end of the list of existing partitions. For ex-
ample, suppose that you have a partitioned table containing membership data for your organisation, which is defined as follows:

CREATE TABLE nenbers (
id INT,
f name VARCHAR(25) ,

)

PARTI TI ON BY RANGE(YEAR(dob)) (
PARTI TI ON pO VALUES LESS THAN (1970),
PARTI TI ON pl VALUES LESS THAN (1980),
PARTI TI ON p2 VALUES LESS THAN (1990)

Suppose further that the minimum age for membersis 16. As the calendar approaches the end of 2005, you realize that you will
soon be admitting members who were born in 1990 (and later in years to come). Y ou can modify the nenber s table to accom-
modate new members born in the years 1990-1999 as shown here:

ALTER TABLE ADD PARTI TI ON (PARTI TI ON p3 VALUES LESS THAN (2000));

Important

With tables that are partitioned by range, you can use ADD PARTI Tl ONto add new partitions to the high end of the
partitions list only. Trying to add a new partition in this manner between or before existing partitions will result in an
error as shown here:

nysql > ALTER TABLE nenbers
> ADD PARTI TI ON (
> PARTI TI ON p3 VALUES LESS THAN (1960)):
ERROR 1463 (HY000): VALUES LESS THAN val ue nust be strictly »
increasing for each partition

In asimilar fashion, you can add new partitionsto atable that is partitioned by L1 ST. For example, given atable defined like so:

CREATE TABLE tt (
id INT,
data | NT

PARTI TI ON BY LI ST(dat a)
PARTI TI ON p0 VALUES
PARTI TI ON p1 VALUES

0, 15),

I(N(5, 1
IN (6, 12, 18)

DE

Y ou can add a new partition in which to store rows having the dat a column values 7, 14, and 21 as shown:

ALTER TABLE tt ADD PARTI TI ON (PARTI TION p2 VALUES IN (7, 14, 21));

Note that you cannot add anew LI ST partition encompassing any values that are already included in the value list of an existing
partition. If you attempt to do so, an error will result:

nysql > ALTER TABLE tt ADD PARTI TI ON
> (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Miltiple definition of same constant »
inlist partitioning

Because any rows with the dat a column value 12 have already been assigned to partition p1, you cannot create a new partition
ontablett thatincludes12 initsvaluelist. To accomplish this, you could drop p1, and add np and then anew p1 with amodi-
fied definition. However, as discussed earlier, thiswould result in the loss of all data stored in p1 — and it is often the case that
thisis not what you really want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy thedatainto it using CREATE TABLE ... SELECT ..., thendrop the old table and rename the new one, but this

19

http://dev.mysql.com/doc/refman/6.0/en/delete.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Management

could be very time-consuming when dealing with alarge amounts of data. This also might not be feasible in situations where high
availability is arequirement.

Y ou can add multiple partitionsinasingle ALTER TABLE ... ADD PARTI TI ON statement as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
fname VARCHAR(50) NOT NULL,
| nane VARCHAR(50) NOT NULL,
hi red DATE NOT NULL

PARTI TI ON BY RANGE(YEAR(hired)) (
PARTI TI ON pl VALUES LESS THAN (1991),
PARTI TI ON p2 VALUES LESS THAN (1996),
PARTI TI ON p3 VALUES LESS THAN (2001),
PARTI TI ON p4 VALUES LESS THAN (2005)

)

ALTER TABLE enpl oyees ADD PARTI TI ON (
PARTI TI ON p5 VALUES LESS THAN (2010),
PARTI TI ON p6 VALUES LESS THAN MAXVALUE

E

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing data. Let uslook first at a
couple of simple examples involving RANGE partitioning. Recall the menber s table which is now defined as shown here:

nysql > SHOW CREATE TABLE nenbers\ G
LEEE R R EEEREEEEREREEEREEEEEEE] 1 r ow LR R R EEEEREEEEREREEEREEEESEEE]
Tabl e: menbers

Create Tabl e: CREATE TABLE " nmenbers” (

“id int(11) default NULL,

“fname’ varchar(25) default NULL,

"l name’ varchar (25) default NULL,

“dob’ date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=l ati nl
PARTI TI ON BY RANGE (YEAR(dob))

PARTI TI ON pO VALUES LESS THAN (1970) ENG NE

= M/ SAM
PARTI TI ON pl1 VALUES LESS THAN (1980) ENG NE = M/I SAM
PARTI TI ON p2 VALUES LESS THAN (1990) ENG NE = M/I SAM
PARTI TI ON p3 VALUES LESS THAN (2000) ENG NE = M/I SAM

Suppose that you would like to move all rows representing members born before 1960 into a separate partition. Aswe have aready
seen, this cannot bedoneusing ALTER TABLE ... ADD PARTI TI ON. However, you can use another partition-related exten-
sionto ALTER TABLE in order to accomplish this:

ALTER TABLE members REORGANI ZE PARTI TI ON pO | NTO (
PARTI TI ON sO VALUES LESS THAN (1960),
PARTI TI ON s1 VALUES LESS THAN (1970)

DE

In effect, this command splits partition pO into two new partitions sO and s 1. It also moves the data that was stored in pO into the
new partitions according to the rules embodied in the two PARTI TI ON . . . VALUES ... clauses, sothat sO containsonly
those records for which YEAR(dob) islessthan 1960 and s 1 contains those rows in which YEAR(dob) is greater than or equal
to 1960 but less than 1970.

A RECRGANI ZE PARTI TI ON clause may also be used for merging adjacent partitions. Y ou can return the nenber s tableto its
previous partitioning as shown here:

ALTER TABLE nenbers REORGANI ZE PARTI TI ON s0, s1 | NTO (
PARTI TI ON pO VALUES LESS THAN (1970)

No dataislost in splitting or merging partitions using REORGANI ZE PARTI Tl ON. In executing the above statement, MySQL
moves all of the records that were stored in partitionss0 and s 1 into partition pO.

The general syntax for REORGANI ZE PARTI Tl ONis:

ALTER TABLE t bl _nane
REORGANI ZE PARTI TION partition_|ist
INTO (partition_definitions);

Here, t bl _nane isthe name of the partitioned table, and partiti on_| i st isacomma-separated list of names of one or more
existing partitions to be changed. parti ti on_defi ni ti ons isacomma-separated list of new partition definitions, which fol-
low the samerulesasfor thepartiti on_defi nitions listusedin CREATE TABLE (see CREATE TABLE Syntax). It
should be noted that you are not limited to merging several partitions into one, or to splitting one partition into many, when using
REORGANI ZE PARTI TI ON. For example, you can reorganize al four partitions of the menber s table into two, as follows:

ALTER TABLE nenbers RECRGANI ZE PARTI TI ON pO0, p1, p2, p3 | NTO (
PARTI TI ON n0 VALUES LESS THAN (1980),
PARTI TI ON ml VALUES LESS THAN (2000)

20

http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

Partition Management

)

You can also use REORGANI ZE PARTI T ON with tables that are partitioned by LI ST. Let us return to the problem of adding a
new partition to the list-partitioned t t table and failing because the new partition had a value that was already present in the value-
list of one of the existing partitions. We can handle this by adding a partition that contains only non-conflicting values, and then re-
organizing the new partition and the existing one so that the value which was stored in the existing one is now moved to the new
one

ALTER TABLE tt ADD PARTI TI ON (PARTI TION np VALUES IN (4, 8));
ALTER TABLE tt REORGANI ZE PARTI TI ON pI, np | NTO (
PARTI TI ON pl VALUES IN (6, 18),
PARTI TION np VALUES in (4, 8, 12)

Here are some key pointsto keep in mind when using ALTER TABLE ... REORGAN ZE PARTI TI ONto repartition tables
that are partitioned by RANGE or LI ST:

e ThePARTI Tl ON clauses used to determine the new partitioning scheme are subject to the same rules as those used with a
CREATE TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any overlapping ranges (applies to tables
partitioned by RANGE) or sets of values (when reorganizing tables partitioned by LI ST).

¢ The combination of partitionsintheparti ti on_defi niti ons list should account for the same range or set of values
overal asthe combined partitionsnamed inthepartiti on_I i st.

For instance, in the nenber s table used as an examplein this section, partitionsp1 and p2 together cover the years 1980
through 1999. Therefore, any reorganization of these two partitions should cover the same range of years overall.

¢ For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over range partitions.

For instance, you could not reorganize the nenber s table used as an example in this section using a statement beginning with
ALTER TABLE nenbers REORGANI ZE PARTI TI ON pO, p2 | NTO ... becausepO coverstheyearsprior to 1970
and p2 the years from 1990 through 1999 inclusive, and thus the two are not adjacent partitions.

¢ You cannot use REORGANI ZE PARTI Tl ON to change the tabl€e's partitioning type; that is, you cannot (for example) change
RANGE partitions to HASH partitions or vice versa. Y ou also cannot use this command to change the partitioning expression or
column. To accomplish either of these tasks without dropping and re-creating the table, you can use ALTER TABLE . ..
PARTI TI ON BY For example:

ALTER TABLE nenbers
PARTI TI ON BY HASH(YEAR(dob))
PARTI TI ONS 8;

3.2. Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making changesin a partitioning
setup, and both differ in a number of ways from tables which have been partitioned by range or list. For that reason, this section ad-
dresses the modification of tables partitioned by hash or by key only. For a discussion of adding and dropping of partitions of tables
that are partitioned by range or list, see Section 3.1, “Management of RANGE and LI ST Partitions’.

Y ou cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can from tables that are parti-
tioned by RANGE or LI ST. However, you can merge HASH or KEY partitionsusingthe ALTER TABLE ... COALESCE PAR-
TI TI ON command. For example, suppose that you have atable containing data about clients, which is divided into twelve parti-
tions. Thecl i ent s tableis defined as shown here:

CREATE TABLE clients (
id INT,
f nane VARCHAR(30),

| name VARCHAR(30),
si gned DATE

)PARTl TI ON BY HASH(MONTH(si gned))
PARTI TI ONS 12;
To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE command:

nysql > ALTER TABLE clients COALESCE PARTI TI ON 4;
Query OK, 0 rows affected (0.02 sec)

21

http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html

Partition Management

COALESCE works equally well with tables that are partitioned by HASH, KEY, LI NEAR HASH, or LI NEAR KEY. Hereisan ex-
ample similar to the previous one, differing only in that the table is partitioned by L1 NEAR KEY:

nysql > CREATE TABLE clients_lk (
I NT.

-> id ,

-> f name VARCHAR(30) ,
-> | nane VARCHAR(30) ,
-> si gned DATE

->)

-> PARTI TI ON BY LI NEAR KEY(si gned)
-> PARTI TIONS 12;
Query OK, 0 rows affected (0.03 sec)
nysql > ALTER TABLE clients_| k COALESCE PARTI TI ON 4;

Query OK, O rows affected (0.06 sec)
Records: O Duplicates: 0 Warnings: 0

Note that the number following COALESCE PARTI TI ONisthe number of partitions to merge into the remainder — in other
words, it isthe number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

nmysql > ALTER TABLE clients COALESCE PARTI TI ON 18;
ERROR 1478 (HY000): Cannot renove all partitions, use DROP TABLE i nstead

To increase the number of partitionsfor thecl i ent s tablefrom 1210 18. use ALTER TABLE ... ADD PARTI Tl ONas
shown here;

ALTER TABLE clients ADD PARTI TI ON PARTI TI ONS 6;

3.3. Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended for such purposes on parti-
tioned tablesin MySQL 6.0.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE, OPTI M ZE TABLE, ANA-
LYZE TABLE, and REPAI R TABLE, which are supported for partitioned tables as of MySQL 6.0.6.

Also beginning with MySQL 6.0.6, you can use a number of extensionsto ALTER TABLE for performing operations of thistype
on one or more partitions directly, as described in the following list:
¢ Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records stored in the partition, then rein-

serting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBU LD PARTI TION p0, pl;

¢ Optimizing partitions. If you have deleted alarge number of rows from a partition or if you have made many changesto a
partitioned table with variable-length rows (that is, having VARCHAR, BLOB, or TEXT columns), you can use ALTER TABLE
OPTI M ZE PARTI TI ONto reclaim any unused space and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTI M ZE PARTI TI ON p0, pi;

Using OPTI M ZE PARTI TI ONon agiven partition is equivalent to running CHECK PARTI TI ON, ANALYZE
PARTI TI ON, and REPAI R PARTI Tl ON on that partition.

e Analyzing partitions. Thisreads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTI TI ON p3;

¢ Repairing partitions. Thisrepairs corrupted partitions.
Example:

ALTER TABLE t1 REPAI R PARTI TI ON pO, p1;

22

http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/optimize-table.html
http://dev.mysql.com/doc/refman/6.0/en/analyze-table.html
http://dev.mysql.com/doc/refman/6.0/en/analyze-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html

Partition Management

¢ Checking partitions. You can check partitions for errorsin much the same way that you can use CHECK TABLE with non-
partitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTI TI ON p1;

This command will tell you if the data or indexes in partition p1 of tablet 1 are corrupted. If thisisthe case, use ALTER TA-

BLE ... REPAI R PARTI TI ONto repair the partition.
Note
The statements ALTER TABLE ... ANALYZE PARTI TI ON,ALTER TABLE ... CHECK PARTI Tl ON,
ALTER TABLE ... OPTIM ZE PARTI TI ON,and ALTER TABLE ... REPAI R PARTI TI ONdid not work

properly as originally implemented, and were disabled in MySQL 6.0.5. They were re-introduced in MySQL 6.0.6.
(Bug#20129) The use of these partitioning-specific ALTER TABLE statements with tables which are not partitioned
is not supported; beginning with MySQL 6.0.8, it is expressly disallowed. (Bug#39434)

3.4. Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number of ways. These include:

e Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a partitioned table.
e Using the SHOW TABLE STATUS statement to determine whether atable is partitioned.
e Querying the| NFORVATI ON_SCHENA. PARTI Tl ONS table.

¢ Using the statement EXPLAI N PARTI TI ONS SELECT to see which partitions are used by a given SELECT.

Asdiscussed elsewhere in this chapter, SHOW CREATE TABLE includesin its output the PARTI TI ON BY clause used to create a
partitioned table. For example:

nmysqgl > SHOW CREATE TABLE trb3\ G
IR R R RS EEEEEEEEEEEEEEEEESESEESE] 1. rOW R R R RS EEEEEEEEEEEEEEEEESESEESE]
Tabl e: trb3
Create Tabl e: CREATE TABLE “trb3" (
“id int(11) default NULL,
“name’ varchar (50) default NULL,
“purchased” date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=I ati nl
PARTI TI ON BY RANGE (YEAR(purchased)) (

PARTI TI ON pO VALUES LESS THAN (1990) ENG NE = Myl SAM
PARTI TI ON p1 VALUES LESS THAN (1995) ENGI NE = M/I SAM
PARTI TI ON p2 VALUES LESS THAN (2000) ENGI NE = M/I SAM
PARTI TI ON p3 VALUES LESS THAN (2005) ENG NE = M/l SAM

)
1 rowin set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tablesis the same as that for non-partitioned tables, except that the Cr e-
at e_opt i ons column containsthestring parti ti oned. The Engi ne column contains the name of the storage engine used
by all partitions of the table. (See SHOW TABLE STATUS Syntax, for more information about this statement.)

Y ou can also obtain information about partitions from | NFORMATI ON_SCHENA, which contains a PARTI Tl ONS table. See The
| NFORMATI ON_SCHEMA PARTI TI ONS Table.

It is possible to determine which partitions of a partitioned table are involved in agiven SELECT query using EXPLAI N PARTI -
TI ONS. The PARTI TI ONS keyword addsapar titi ons column to the output of EXPLAI N listing the partitions from which re-
cords would be matched by the query.

Suppose that you have atablet r b1 defined and populated as follows:

CREATE TABLE trbl (id INT, nane VARCHAR(50), purchased DATE)
PARTI TI ON BY RANGE(i d)

PARTI TI ON p0 VALUES LESS THAN (3),
PARTI TI ON pl VALUES LESS THAN (7)
PARTI TI ON p2 VALUES LESS THAN (9) .
PARTI TI ON p3 VALUES LESS THAN (11

)

I NSERT | NTO trbl VALUES
(1, 'desk organiser', '2003-10-15"),
(2, 'CD player', '1993-11-05'),

23

http://bugs.mysql.com/20129
http://bugs.mysql.com/39434
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-table-status.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-table-status.html
http://dev.mysql.com/doc/refman/6.0/en/show-table-status.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/partitions-table.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/explain.html

Partition Management

e e T e e VN
POO~NO O AW

'TV set',
' bookcase'
' exercise bike'
‘sofa',
' popcorn meker',
‘aquariun,
, 'study desk',
0, 'lava | anp'

' 1996- 03- 10"),
"1982-01- 10'),

' 2004- 05-09'),

1987- 06- 05') ,

"2001-11-22'),

"1992- 08- 04") ,
"1984- 09- 16') ,

' 1998-12-25') ;

Y ou can see which partitions are used in aquery such as SELECT * FROM trbl; , asshown here:

sqgl > EXPLAI N PARTI TI ONS SELECT * FROM tr b1\ G

KIAKAK KKK KKK KKK KKK Rk Xk Ak A h K]

id:

sel ect _type
tabl e:
partitions:
type:
possi bl e_keys
key

key_l en:
ref:

rows:

Extra

FOW **XHkxkkhdkhkdkhkdkxhkhhhkkhkxkxkhx

1

S| MPLE
trbl

po, p1, p2, p3
ALL

NULL

NULL

NULL

NULL

10

Using filesort

In this case, all four partitions are searched. However, when alimiting condition making use of the partitioning key is added to the
query, you can see that only those partitions containing matching values are scanned, as shown here:

nysql > EXPLAI N PARTI TI ONS SELECT * FROM trbl WHERE id < 5\G

KRk KKk Kk Kk hkkkkkkkhkkhkk kx|

id:

sel ect _type
tabl e:
partitions:

type:
possi bl e_keys
key

key_| en:

ref:

rows:

Extra

kkkkkhkkhkhhkhkhkkhkhkhkkhkkkkkkkkk*
row

1

S| VPLE
trbl
po, p1
ALL

NULL

NULL

NULL

NULL

10

Usi ng where

EXPLAI N PARTI TI ONS provides information about keys used and possible keys, just as with the standard EXPLAI N SELECT
statement:

nysql > ALTER TABLE trbl ADD PRI MARY KEY (id);

Query OK, 10 rows affected (0.03 sec)

Records: 10 Duplicates: 0 Warnings: 0

nmysqgl > EXPLAI N PARTI TI ONS SELECT * FROM trbl WHERE id < 5\ G

Kk Ak khkhkkkkkhkhkhkhkkkkhkh*]

id:

sel ect _type
tabl e:
partitions:

type:
possi bl e_keys
key

key_l en:

ref:

rows:

Extra

[FOW X** Xk hkk ke hkkhkxkhkkhkkkkk k%

1

S| MPLE
trbl
po, p1
range
PRI VARY
PRI VARY

4
NULL

7

Usi ng where

Y ou should take note of the following restrictions and limitations on EXPLAI N PARTI TI ONS:

e You cannot use the PARTI TI ONS and EXTENDED keywords together in the same EXPLAI N . .. SELECT statement. At-

tempting to do so produces a syntax error.
e If EXPLAI N PARTI TI ONS isused to examine aquery against a non-partitioned table, no error is produced, but the value of
thepartiti ons columnisaways NULL.
Asof MySQL 6.0.7, ther ows column of EXPLAI N PARTI TI ONS output always displays the total number of recordsin the ta-
ble. Previously, this was the number of matching rows. (Bug#35745)

See also EXPLAI N Syntax.

24

http://dev.mysql.com/doc/refman/6.0/en/explain.html
http://bugs.mysql.com/35745
http://dev.mysql.com/doc/refman/6.0/en/explain.html

Chapter 4. Partition Pruning

This section discusses an optimization known as partition pruning. The core concept behind partition pruning is relatively simple,
and can be described as “ Do not scan partitions where there can be no matching values’. For example, suppose you have a parti-
tioned tablet 1 defined by this statement:

CREATE TABLE t1 (
fname VARCHAR(50) NOT NULL,
I nane VARCHAR(50) NOT NULL,
regi on_code TINYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)

PARTI TI ON BY RANGE(regi on_code) (
PARTI TI ON pO VALUES LESS THAN (64),
PARTI TI ON p1 VALUES LESS THAN (128),
PARTI TI ON p2 VALUES LESS THAN (192),
PARTI TI ON p3 VALUES LESS THAN MAXVALUE

Consider the case where you wish to obtain results from a query such asthis one:

SELECT fnane, |nanme, region_code, dob
FROM t 1
VWHERE r egi on_code > 125 AND regi on_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions pO or p3; that is, we need to
search only in partitions p1 and p2 to find matching rows. By doing so, it is possible to expend much more time and effort in find-
ing matching rows than it isto scan all partitionsin the table. This“ cutting away” of unneeded partitions is known as pruning.
When the optimizer can make use of partition pruning in performing a query, execution of the query can be an order of magnitude
faster than the same query against a non-partitioned table containing the same column definitions and data.

The query optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the following:

e partition_colum = constant

e partition_colum IN (constantl, constant2, ..., constantN)

In thefirst case, the optimizer simply evaluates the partitioning expression for the value given, determines which partition contains
that value, and scans only this partition. In many cases, the equals sign can be replaced with another arithmetic comparison, includ-
ing <, >, <=, >=, and <>. Some queries using BETV\EEN in the \WHERE clause can also take advantage of partition pruning. See the
examples later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list, creates alist of matching partitions,
and then scans only the partitionsin this partition list.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of values. For instance, in the pre-
vious example, the WHERE clause can be converted to WHERE r egi on_code | N (125, 126, 127, 128, 129, 130).
Then the optimizer can determine that the first three valuesin the list are found in partition p1, the remaining three values in parti-
tion p2, and that the other partitions contain no relevant values and so do not need to be searched for matching rows.

This type of optimization can be applied whenever the partitioning expression consists of an equality or arange which can be re-
duced to a set of equalities, or when the partitioning expression represents an increasing or decreasing relationship. Pruning can
also be applied for tables partitioned on a DATE or DATETI ME column when the partitioning expression uses the YEAR() or
TO_DAYS() function.

Note

We plan to add pruning support in afuture MySQL release for additional functions that act on a DATE or DATETI ME
value, return an integer, and are increasing or decreasing.
For example, suppose that tablet 2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
fname VARCHAR(50) NOT NULL,
| nane VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)

PARTI TI ON BY RANGE(YEAR(dob)) (
PARTI TI ON dO VALUES LESS THAN (1970),
PARTI TI ON d1 VALUES LESS THAN (1975) .
PARTI TI ON d2 VALUES LESS THAN (1980),
PARTI TI ON d3 VALUES LESS THAN (1985),
PARTI TI ON d4 VALUES LESS THAN (1990) .
PARTI TI ON d5 VALUES LESS THAN (2000),

25

http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/datetime.html

Partition Pruning

PARTI TI ON d6 VALUES LESS THAN (2005),
PARTI TI ON d7 VALUES LESS THAN MAXVALUE

)i
The following querieson t 2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = ' 1982-06- 23" ;
SELECT * FROM t2 WHERE dob BETWEEN ' 1991-02-15' AND ' 1997- 04- 25' ;
SELECT * FROM t2 WHERE dob >= ' 1984-06-21' AND dob <= '1999-06- 21

In the case of the last query, the optimizer can also act asfollows:

1. Find the partition containing the low end of the range.

YEAR(' 1984- 06- 21") yieldsthevalue 1984, which isfound in partition d3.
2. Find the partition containing the high end of the range.

YEAR(' 1999- 06- 21") evaluatesto 1999, which isfound in partition d5.
3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitionsd3, d4, and d5 are scanned. The remaining partitions may be safely ignored (and
areignored).

Important

Invalid DATE and DATET!| ME values referenced in the WHERE clause of a query on a partitioned table are treated as
NULL. This meansthat aquery such as SELECT * FROM partitioned_tabl e WHERE dat e_col uim <
' 2008- 12- 00" does not return any values (see Bug#40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with other partitioning types as
well.

Consider atablethat is partitioned by LI ST, where the partitioning expression is increasing or decreasing, such asthetablet 3
shown here. (In this example, we assume for the sake of brevity that ther egi on_code columnislimited to values between 1 and
10inclusive.)

CREATE TABLE t3 (
fname VARCHAR(50) NOT NULL,
| nane VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)
PARTI TI ON BY LI ST(regi on_co

_code) (
PARTI TION rO VALUES IN (1, 3),
PARTITION r1 VALUES IN (2, 5, 8)
PARTI TION r2 VALUES IN (4, 9),
PARTI TION r3 VALUES IN (6, 7, 10)

For aquery suchas SELECT * FROM t 3 WHERE r egi on_code BETWEEN 1 AND 3, the optimizer determinesin which
partitions the values 1, 2, and 3 are found (r O and r 1) and skips the remaining ones (r 2 and r 3).

For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the WHERE clause uses asimple
= relation against a column used in the partitioning expression. Consider atable created like this:

CREATE TABLE t4 (

)
PARTI TI ON BY KEY(regi on_code)
PARTI TI ONS 8;

Any query such as this one can be pruned:

SELECT * FROM t4 WHERE regi on_code = 7;

Pruning can aso be employed for short ranges, because the optimizer can turn such conditionsinto | N relations. For example, us-
ing the same table t 4 as defined previously, queries such as these can be pruned:

26

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://bugs.mysql.com/40972

Partition Pruning

SELECT * FROM t4 WHERE regi on_code > 2 AND regi on_code < 6;
SELECT * FROM t4 WHERE regi on_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE r egi on_code IN (3, 4, 5).

Important
This optimization is used only if the range size is smaller than the number of partitions. Consider this query:
SELECT * FROM t4 WHERE regi on_code BETWEEN 4 AND §;

The range in the WHERE clause covers 5 values (4, 5, 6, 7, 8), but t 4 has only 4 partitions. This means that the previ-
ous query cannot be pruned.

Pruning can be used only on integer columns of tables partitioned by HASH or KEY. For example, this query on tablet 4 cannot use
pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= ' 2001- 04- 14' AND dob <= '2005-10-15';

However, if thetable stores year valuesin an | NT column, then a query having WHERE year _col >= 2001 AND
year _col <= 2005 can be pruned.

27

http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/numeric-types.html

Chapter 5. Restrictions and Limitations on Partitioning

This section discusses current restrictions and limitations on MySQL partitioning support, as listed here:

« Prohibited constructs. The following constructs are not permitted in partitioning expressions:
» Stored functions, stored procedures, UDFs, or plugins.

» Declared variables or user variables.
For alist of SQL functions which are permitted in partitioning expressions, see Section 5.3, “Partitioning Limitations Relating
to Functions”.

e Arithmetic and logical operators. Use of the arithmetic operators +, —, and * is permitted in partitioning expressions.
However, the result must be an integer value or NULL (except inthe case of [LI NEAR] KEY partitioning, as discussed
elswhere in this chapter — see Chapter 2, Partition Types, for more information).

Beginning with MySQL 6.0.4, the DI V operator is also supported, and the/ operator is disallowed. (Bug#30188, Bug#33182)
The bit operators| , & ", <<, >>, and ~ are not permitted in partitioning expressions.

e Server SQL mode. Tablesemploying user-defined partitioning do not preserve the SQL mode in effect at the time that they
were created. Asdiscussed in Server SQL Modes, the results of many MySQL functions and operators may change according
to the server SQL mode. Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to
major changes in the behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is strongly
recommended that you never change the server SQL mode after creating partitioned tables.

Examples. The following examplesillustrate some changes in behavior of partitioned tables due to a change in the server SQL
mode:

1. Error handling. Suppose you create a partitioned table whose partitioning expressionisone such ascol unm DIV 0 or
col um MOD 0, as shown here:

nysql > CREATE TABLE tn (cl | NT)
S PARTI TION BY LI ST(1 DIV cl)
o> PARTI TI ON pO VALUES | N (NULL),
- PARTI TI ON p1 VALUES IN (1)
->

Query G)< 0 rows affected (0.05 sec)
The default behavior for MySQL isto return NULL for the result of a division by zero, without producing any errors:

r'rysql > SELECT @(l MODE;

1 rowin set (0 00 sec)

mysql > | NSERT INTOtn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict error handling causes
the same | NSERT statement to fail, as shown here:

nmysql > SET SQL_MODE=' STRI CT_ALL_TABLES, ERROR_FOR DI VI S| ON_BY_ZERO ;
Query OK, 0 rows affected (0.00 sec)

nysql > | NSERT | NTO tn VALUES (NULL) (0), (1);

ERROR 1365 (22012): DiviSION BY

2. Tableaccessibility. Sometimes achange in the server SQL mode can make partitioned tables unusable. The following
CREATE TABLE statement can be executed successfully only if the NO_UNSI GNED_SUBTRACTI ON'mode isin effect:

rrysql > SELECT @@(l MODE;

1 rowin set (0 00 sec)
mysql > CREATE TABLE tu (cl BI G NT UNSI GNED)
-> PARTI TION BY RANGE(cl1 - 10

-> PARTI TI ON pO VALUES LESS THAN (-5),

-> PARTI TI ON p1 VALUES LESS THAN (0),

-> PARTI TI ON p2 VALUES LESS THAN (5),

-> PARTI TI ON p3 VALUES LESS THAN (10),

-> : PARTI TI ON p4 VALUES LESS THAN (MAXVALUE)
-> ’

28

http://dev.mysql.com/doc/refman/6.0/en/arithmetic-functions.html#operator_plus
http://dev.mysql.com/doc/refman/6.0/en/arithmetic-functions.html#operator_minus
http://dev.mysql.com/doc/refman/6.0/en/arithmetic-functions.html#operator_times
http://dev.mysql.com/doc/refman/6.0/en/arithmetic-functions.html#operator_div
http://dev.mysql.com/doc/refman/6.0/en/arithmetic-functions.html#operator_divide
http://bugs.mysql.com/30188
http://bugs.mysql.com/33182
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_bitwise-or
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_bitwise-and
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_bitwise-xor
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_left-shift
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_right-shift
http://dev.mysql.com/doc/refman/6.0/en/bit-functions.html#operator_bitwise-invert
http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html#sqlmode_no_unsigned_subtraction

Restrictions and Limitations on Partitioning

ERROR 1563 (HYOO0O0): PARTITION CONSTANT IS OUT OF PARTITION FUNCTI ON DOVAI N
nysqgl > SET SQL_MODE=' NO_UNSI GNED_SUBTRACTI ON ;

Query OK, 0 rows affected (0.00 sec)

nysql > SELECT @@5QL_MODE;

fcooooooocooocoocooooooooo +
|+ @BQ._MDE |+
| NO_UNSI GNED_SUBTRACTI ON |
fmoocomocosooomosooooosooa +

1 rowin set (0.00 sec)
mysql > CREATE TABLE tu (cl BI G NT UNSI GNED)
-> PARTI TI ON BY RANGE(c1 10

-> PARTI TI ON pO VALUES LESS THAN (-5),

-> PARTI TI ON p1 VALUES LESS THAN (0),

-> PART| TI ON p2 VALUES LESS THAN (5),

S PARTI TI ON p3 VALUES LESS THAN (10),

-> PARTI TI ON p4 VALUES LESS THAN (MAXVALUE)
->)

Query G<, 0 rows affected (0.05 sec)

If you remove the NO_UNSI GNED_SUBTRACT| ON server SQL mode after creating t u, you may no longer be able to ac-
cessthistable:

nysql > SET SQ._MODE="";

Query OK, 0 rows affected (0.00 sec)

nysql > SELECT * FROM tu;

ERROR 1563 (HY000): PARTITION CONSTANT |'S OUT OF PARTITION FUNCTI ON DOVAI N
mysql > | NSERT | NTO tu VALUES (20);

ERROR 1563 (HY000): PARTITION CONSTANT IS OUT OF PARTITION FUNCTI ON DOVAI N

Performance consider ations.

» Filesystem operations. Partitioning and repartitioning operations (such as ALTER TABLE with PARTI TI ON BY .. .,
RECRGANI ZE PARTI TI ONS, or REMOVE PARTI TI ONI NG) depend on file system operations for their implementation.
This means that the speed of these operations is affected by such factors as file system type and characteristics, disk speed,
swap space, file handling efficiency of the operating system, and MySQL server options and variables that relate to file
handling. In particular, you should make surethat | arge _fil es_support isenabled andthatopen files [imt
is set properly. For partitioned tables using the Myl SAMstorage engine, increasing myi sam max_sort _file_size
may improve performance; partitioning and repartitioning operations involving | nnoDB tables may be made more efficient
by enablingi nnodb_fi | e_per _tabl e.

» Tablelocks. The process executing a partitioning operation on atable takes awrite lock on the table. Reads from such
tables are relatively unaffected; pending | NSERT and UPDATE operations are performed as soon as the partitioning opera-
tion has completed.

» Storageengine. Partitioning operations, queries, and update operations generally tend to be faster with Myl SAMtables
than with | nnoDB or NDB tables.

» Useof indexesand partition pruning. Aswith non-partitioned tables, proper use of indexes can speed up queries on par-
titioned tables significantly. In addition, designing partitioned tables and queries on these tables to take advantage of parti-
tion pruning can improve performance dramatically. See Chapter 4, Partition Pruning, for more information.

e Performancewith LOAD DATA. Prior to MySQL 6.0.4, LOAD DATA performed very poorly when importing into parti-
tioned tables. The statement now uses buffering to improve performance; however, the buffer uses 130 KB memory per par-
tition to achieve this. (Bug#26527)

Maximum number of partitions. The maximum number of partitions possible for a given table is 1024. Thisincludes subpar-
titions.

If, when creating tables with a very large number of partitions (but which isless than the maximum stated previously), you en-
counter an error message such as Gor ERROR 24 FROM STORAGE ENG NE, this means that you may need to increase the value
of theopen_files_|imt syssemvariable. See' FILE' Nor Founp and Similar Errors.

Foreign keys not supported. Partitioned tables do not support foreign keys. This means that:
1. Definitions of tables employing user-defined partitioning may not contain foreign key referencesto other tables.

2. Notable definition may contain aforeign key reference to a partitioned table.
The scope of these restrictions includes tables that use the | nnoDB storage engine.

ALTER TABLE ... ORDER BY. AnALTER TABLE ... ORDER BY col unm statement run against a partitioned ta-
ble causes ordering of rows only within each partition.

FULLTEXT indexes. Partitioned tables do not support FULLTEXT indexes. This includes partitioned tables employing the
My | SAMstorage engine.

29

http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html#sqlmode_no_unsigned_subtraction
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_large_files_support
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_open_files_limit
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_myisam_max_sort_file_size
http://dev.mysql.com/doc/refman/6.0/en/innodb-parameters.html#sysvar_innodb_file_per_table
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://bugs.mysql.com/26527
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_open_files_limit
http://dev.mysql.com/doc/refman/6.0/en/common-errors.html#not-enough-file-handles

Restrictions and Limitations on Partitioning

e Spatial columns. Columnswith spatial data types such as PO NT or GEOVETRY cannot be used in partitioned tables.
 Temporary tables. Temporary tables cannot be partitioned. (Bug#17497)

e Logtables. Itisnot possibleto partition thelog tables; an ALTER TABLE ... PARTI TI ON BY ... statement onsucha
table fails with an error. (Bug#27816)

« Datatype of partitioning key. A partitioning key must be either an integer column or an expression that resolvesto an in-
teger. The column or expression value may also be NULL. (See Section 2.6, “How MySQL Partitioning Handles NULL".)

The lone exception to this restriction occurs when partitioning by [LI NEAR] KEY, where it is possible to use columns of other
types as partitioning keys, because MySQL 's internal key-hashing functions produce the correct data type from these types. For
example, the following CREATE TABLE statement is valid:

CREATE TABLE tkc (cl CHAR)
PARTI TI ON BY KEY(c1)
PARTI TI ONS 4;

This exception does not apply to BLOB or TEXT column types.
e Subqueries. A partitioning key may not be a subquery, even if that subquery resolvesto an integer value or NULL.
¢ Subpartitions. Subpartitions are limited to HASH or KEY partitioning. HASH and KEY partitions cannot be subpartitioned.

« Key cachesnot supported. Key caches are not supported for partitioned tables. The CACHE | NDEX and LOAD | NDEX
| NTO CACHE statements, when you attempt to use them on tables having user-defined partitioning, fail with the errors THE
STORAGE ENGI NE FOR THE TABLE DOESN T SUPPORT ASSI GN_TO KEYCACHE and THE STORAGE ENGI NE FOR THE TABLE
DOESN' T SUPPORT PRELOAD_KEYS, respectively.

« DELAYED option not supported. Useof | NSERT DELAYEDto insert rowsinto a partitioned tableis not supported. Begin-
ning with MySQL 6.0.4, attempting to do so fails with an error. (Bug#31210)

e DATA DI RECTORY and | NDEX DI RECTORY options. DATA DI RECTORY and | NDEX DI RECTORY are subject to the
following restrictions when used with partitioned tables:

* Beginning with MySQL 6.0.4, table-level DATA DI RECTCRY and | NDEX DI RECTORY options are ignored.
(Bug#32091)

e OnWindows, the DATA DI RECTORY and | NDEX DI RECTORY options are not supported for individual partitions or
subpartitions (Bug#30459).

¢ Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTI M ZE TABLE, ANALYZE TABLE,
and REPAI R TABLE are supported for partitioned tables beginning with MySQL 6.0.6. (See Bug#20129.) nysql check and
nyi santhk are not supported with partitioned tables.

In addition, you canuse ALTER TABLE ... REBU LD PARTI Tl ONto rebuild one or more partitions of a partitioned ta-
ble; ALTER TABLE ... REORGANI ZE PARTI TI ONalso causes partitionsto be rebuilt. See ALTER TABLE Syntax, for
more information about these two statements.

5.1. Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule governing this relationship
can be expressed as follows: All columns used in the partitioning expression for a partitioned table must be part of every unique
key that the table may have.

In other words, every unique key on the table must use every column in the tabl€'s partitioning expression. (This also includes the
table's primary key, sinceit is by definition a unique key. This particular case is discussed later in this section.) For example, each
of the following table creation statementsisinvalid:

CREATE TABLE t1 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col 2)

)

PARTI TI ON BY HASH(col 3)

PARTI TI ONS 4;

CREATE TABLE t2 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,

30

http://bugs.mysql.com/17497
http://bugs.mysql.com/27816
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/blob.html
http://dev.mysql.com/doc/refman/6.0/en/blob.html
http://dev.mysql.com/doc/refman/6.0/en/cache-index.html
http://dev.mysql.com/doc/refman/6.0/en/load-index.html
http://dev.mysql.com/doc/refman/6.0/en/load-index.html
http://dev.mysql.com/doc/refman/6.0/en/insert-delayed.html
http://bugs.mysql.com/31210
http://bugs.mysql.com/32091
http://bugs.mysql.com/30459
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/optimize-table.html
http://dev.mysql.com/doc/refman/6.0/en/analyze-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://bugs.mysql.com/20129
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html

Restrictions and Limitations on Partitioning

UNI QUE KEY (col 1),
UNI QUE KEY (col 3)

)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns used in the partitioning ex-
pression.

Each of the following statements is valid, and represents one way in which the corresponding invalid table creation statement could
be made to work:

CREATE TABLE t1 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col2, col3)

)
PARTI TI ON BY HASH(col 3)
PARTI TI ONS 4;
CREATE TABLE t2 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col 3)

)

PARTI TI ON BY HASH(col 1 + col 3)

PARTI TI ONS 4;

This example shows the error produced in such cases:

nysql > CREATE TABLE t3 (
-> col 1 I NT NOT NULL,

-> col 2 DATE NOT NULL,

-> col 3 I NT NOT NULL,

-> col 4 | NT NOT NULL,

-> UNI QUE KEY (col 1, col 2),
-=) UNI QUE KEY (col 3)

-=

-> PARTI TI ON BY HASH(col 1 + col 3)
-> PARTI TI ONS 4;
ERROR 1491 (HY000): A PRI MARY KEY MJST INCLUDE ALL COLUMNS IN THE TABLE S PARTI TI ONING FUNCTI ON

The CREATE statement fails because both col 1 and col 3 areincluded in the proposed partitioning key, but neither of these
columnsis part of both of unique keys on the table. This shows one possible fix for theinvalid table definition;

nysql > CREATE TABLE t3 (
-> col 1 I NT NOT NULL,
-> col 2 DATE NOT NULL,
-> col 3 I NT NOT NULL,
-> col 4 | NT NOT NULL,
-> UNI QUE KEY (col 1, col 2, col 3),
-> UNI QUE KEY (col 3)
->)

-> PARTI TI ON BY HASH(col 3)
-> PARTI TI ONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col 3 is part of both unique keys, and the table creation statement succeeds.

Since every primary key is by definition a unique key, this restriction also includes the table's primary key, if it has one. For ex-
ample, the next two statements areinvalid:

CREATE TABLE t4 (
col 1 INT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 |NT NOT NULL,
PRI MARY KEY(col 1, col 2)

)
PARTI TI ON BY HASH(col 3)
PARTI TI ONS 4;
CREATE TABLE t5 (
col 1 I'NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I'NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 3),
UNI QUE KEY(col 2)

)
PARTI TI ON BY HASH(YEAR(col 2))
PARTI TI ONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression. However, both of the next

31

Restrictions and Limitations on Partitioning

two statements are valid:

CREATE TABLE t6 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 2)

)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;
CREATE TABLE t7 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
PRI MARY KEY(col 1, col 2, col 4),
UNI QUE KEY(col 2, col 1)

)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;

If atable has no unique keys — this includes having no primary key — then this restriction does not apply, and you may use any
column or columns in the partitioning expression as long as the column type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes all columns used by the table's
partitioning expression. Consider given the partitioned table defined as shown here:

nysql > CREATE TABLE t _no_pk (c1 INT, c2 INT)

-> PARTI TI ON BY RANGE(c1)

-> PART| TI ON pO VALUES LESS THAN (10),
-> PARTI TI ON p1 VALUES LESS THAN (20),
-> PARTI TI ON p2 VALUES LESS THAN (30),
-> PARTI TI ON p3 VALUES LESS THAN (40)

-> ;

Query OK, 0 rows affected (0.12 sec)

Itispossibleto add aprimary key tot _no_pk using either of these ALTER TABLE statements:

possible PK

mysql > ALTER TABLE t _no_pk ADD PRI MARY KEY(c1);
Query OK, O rows affected (0.13 sec)

Records: O Duplicates: 0 MWarnings: 0

drop this PK

mysql > ALTER TABLE t _no_pk DROP PRI MARY KEY;
Query OK, 0 rows affected (0.10 sec)

Records: O Duplicates: 0O Warnings: 0

use anot her possible PK

mysql > ALTER TABLE t_no_pk ADD PRI MARY KEY(cl, c2);
Query OK, 0 rows affected (0.12 sec)

Records: O Duplicates: 0 Warnings: O

drop this PK

mysql > ALTER TABLE t _no_pk DROP PRI MARY KEY;
Query OK, O rows affected (0.09 sec)

Records: O Duplicates: 0 Warnings: 0

However, the next statement fails, because c 1 is part of the partitioning key, but is not part of the proposed primary key:

fails with error 1503
nysql > ALTER TABLE t _no_pk ADD PRI MARY KEY(c2);
ERROR 1503 (HY000): A PRI MARY KEY MJUST INCLUDE ALL COLUMNS IN THE TABLE S PARTI TI ONI NG FUNCTI ON

Sincet _no_pk hasonly c1 inits partitioning expression, attempting to adding a unique key on c2 aone fails. However, you can
add a unique key that usesboth c1 and c2.

These rules also apply to existing non-partitioned tables that you wish to partition using ALTER TABLE ... PARTI TI ON BY.
Consider atablenp_pk defined as shown here:

nysql > CREATE TABLE np_pk (

-> id INT NOT NULL AUTO | NCREMENT,
-> name VARCHAR(50),

== added DATE,

-> PRI MARY KEY (i d)

->) ;

Query OK, 0 rows affected (0.08 sec)

Thefollowing ALTER TABLE statements fails with an error, because the added column is not part of any unique key in the table:

nysql > ALTER TABLE np_pk
-> PARTI TI ON BY HASH(TO _DAYS(added))
-> PARTI TI ONS 4;
ERROR 1503 (HY000): A PRI MARY KEY MUST I|NCLUDE ALL COLUWNS IN THE TABLE S PARTITI ONI NG FUNCTI ON

32

http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html

Restrictions and Limitations on Partitioning

However, this statement using thei d column for the partitioning column is valid, as shown here:

nysql > ALTER TABLE np_pk

-> PARTI TI ON BY HASH(i d)

-> PARTI TI ONS 4,
Query OK, 0 rows affected (0.11 sec)
Records: O Duplicates: 0 Warnings: 0O

In the case of np_pk, the only column that may be used as part of a partitioning expressionisi d; if you wish to partition this table
using any other column or columns in the partitioning expression, you must first modify the table, either by adding the desired
column or columns to the primary key, or by dropping the primary key altogether.

We are working to remove this limitation in a future MySQL release series.

5.2. Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

VERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible. Tables using the VERGE
storage engine cannot be partitioned. Partitioned tables cannot be merged.

FEDERATED stor age engine. Partitioning of FEDERATED tablesis not supported; it is not possible to create partitioned FEDER-
ATED tables. We are working to remove this limitation in a future MySQL release.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not possible to create partitioned CSV
tables.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY must be dumped and rel oaded.
Same storage engine for all partitions. All partitions of a partitioned table must use the same storage engine and it must be the
same storage engine used by the table as awhole. In addition, if one does not specify an engine on the table level, then one must do
either of the following when creating or altering a partitioned table:

« Do not specify any engine for any partition or subpartition

« Specify the engine for all partitions or subpartitions

We are working to remove this limitation in a future MySQL release.

5.3. Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in partitioning expressions.

Only the following MySQL functions are supported in partitioning expressions:

. ABS()

e CElILI N&) (seeCEl LI N) and FLOOR() , immediately following this list)
- DAY()

« DAYOFMONTH()

« DAYOFWEEK()

« DAYOFYEAR()

- DATEDI FF()

« EXTRACT()

e FLOOR() (seeCEI LI N&) and FLOOR() , immediately following thislist)
« HOUR()

« M CROSECOND)

« M NUTE()

33

http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_abs
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_ceiling
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_ceiling
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_floor
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_day
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_dayofmonth
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_dayofweek
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_dayofyear
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_datediff
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_extract
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_floor
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_ceiling
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_floor
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_hour
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_microsecond
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_minute

Restrictions and Limitations on Partitioning

MoD()
MONTH()

QUARTER()
SECOND()

TI ME_TO _SEC()
TO DAYS()
VEEKDAY()
YEAR()

YEARVEEK()

Note

CEl LI N&) and FLOOR() . Each of these functions returns an integer only if it is passed an integer argument. This
means, for example, that the following CREATE TABLE statement fails with an error, as shown here:

nysql > CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
PARTI TION pO VALUES IN (1, 3,5),
-> PARTI TI ON p1 VALUES IN (2, 4, 6)
->)
ERROR 1490 (HY000): THe PARTI TI ON FUNCTI ON RETURNS THE WRONG TYPE

See Mathematical Functions, for more information about the return types of these functions.

http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_mod
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_quarter
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_second
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_time-to-sec
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_to-days
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_weekday
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_yearweek
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html

	MySQL Partitioning
	Partitioning
	Chapter 1. Overview of Partitioning in MySQL
	Chapter 2. Partition Types
	2.1. RANGE Partitioning
	2.2. LIST Partitioning
	2.3. HASH Partitioning
	2.3.1. LINEAR HASH Partitioning

	2.4. KEY Partitioning
	2.5. Subpartitioning
	2.6. How MySQL Partitioning Handles NULL

	Chapter 3. Partition Management
	3.1. Management of RANGE and LIST Partitions
	3.2. Management of HASH and KEY Partitions
	3.3. Maintenance of Partitions
	3.4. Obtaining Information About Partitions

	Chapter 4. Partition Pruning
	Chapter 5. Restrictions and Limitations on Partitioning
	5.1. Partitioning Keys, Primary Keys, and Unique Keys
	5.2. Partitioning Limitations Relating to Storage Engines
	5.3. Partitioning Limitations Relating to Functions

